Причины возникновения отказов могут быть связаны с нарушением в выполнении каких-либо заданных функций (отказ функционирования) или с недостаточной квалификацией обслуживающего персонала, в результате которой система не выполняет заданные функции удовлетворительно. Отказы могут быть связаны с изменением параметров или характеристик системы, т.е. одна из основных функций выполняется плохо (отказ по параметру). Так же причинами отказов объектов могут быть дефекты, допущенные при конструировании, производстве и ремонте, нарушение правил и норм эксплуатации, различного рода повреждения, а также естественные процессы изнашивания и старения.

Согласно ГОСТ 15467-79 отказ может быть в результате дефекта. Это понятие отражает состояние объекта. Дефектом называется каждое отдельное несоответствие объекта установленным нормам или требованиям. Дефект отражает состояние отличное от отказа. В соответствии с определением отказа, как события, заключающегося в нарушении работоспособности, предполагается, что до появления отказа объект был работоспособен. Отказ может быть следствием развития неустраненых повреждений или наличия дефектов: царапин; потертости изоляции; небольших деформаций.

По признаку стадии происхождения дефекты можно разделить на три группы:

1. Дефекты (ошибки) проектирования. Сюда можно отнести:

недостаточную виброзащищенность;

наличие повышенных напряжений;

неправильный выбор материалов;

неправильное определение предполагаемого уровня эксплуатационных нагрузок.

2. Дефекты изготовления (производственные). К ним можно отнести:

дефекты механической обработки;

дефекты пайки;

дефекты термообработки;

дефекты сборки.

3. Дефекты эксплуатации. Сюда можно отнести:

нарушение условий применения;

неправильное техническое обслуживание и ремонт;

наличие перегрузок и непредвиденных нагрузок;

применение некачественных эксплуатационных материалов.

Также причинами возникновения отказов являются:

1. Конструкционный отказ, вызванный недостатками и неудачной конструкцией объекта;

2. Производственный отказ, связанный с ошибками при изготовлении объекта по причине несовершенства или нарушения технологии;

3. Эксплуатационный отказ, вызванный нарушением правил эксплуатации.

4. Характер устранения;

5. Устойчивый отказ;

6. Перемежающийся отказ (возникающий / исчезающий).

К последствиям отказа относятся явления, процессы и события, возникшие после отказа и в непосредственной причинной связи с ним (остановка двигателя, вынужденный простой по техническим причинам).

Последствиями отказа являются:

1. Легкий отказ (легкоустранимый);

2. Средний отказ (не вызывающий отказы смежных узлов - вторичные отказы);

3. Тяжелый отказ (вызывающий вторичные отказы или приводящий к угрозе жизни и здоровью человека).

4. Дальнейшее использование объекта:

5. Полные отказы, исключающие возможность работы объекта до их устранения;

6. Частичные отказы, при которых объект может частично использоваться.

Основные показатели безотказности для невосстанавливаемых объектов

Невосстанавливаемый объект - это объект, который не подлежит восстановлению в результате отказа.

Вероятность безотказной работы - это вероятность того, что в пределах заданий наработки отказ объекта не возникает. На практике этот показатель определяется статистической оценкой:

где N o - число однотипных объектов, поставленных на испытания (находящихся под контролем); во время испытаний отказавший объект не восстанавливается и не заменяется исправным;

n(t) - число отказавших объектов за время t .

Из определения вероятности безотказной работы видно, что эта характеристика является функцией времени, причем она является убывающей функцией и может принимать значения от 1 до 0.


График вероятности безотказной работы объекта

Как видно из графика, функция P(t) характеризует изменение надежности во времени и является достаточно наглядной оценкой

Иногда практически целесообразно пользоваться не вероятностью безотказной работы, а вероятностью отказа Q(t). Поскольку работоспособность и отказ являются состояниями несовместимыми и противоположными, то их вероятности связаны зависимостью:

P(t) + Q(t) = 1. (2)

Согласно законам теории вероятности вероятность безотказной работы можно определить по формуле:

где f(t) - плотность вероятности (согласно закона распределения).

Таким образом, зная плотность вероятности f(t), легко найти искомую величину P(t).

Связь между P(t), Q(t) и f(t) можно интерпретировать, как показано на рисунке 3.

Графическая интерпретация вероятности безотказной работы и вероятности отказа

отказ невосстанавливаемый наработка безотказный

Отметим, что не всегда в качестве наработки выступает время (в часах, годах). К примеру, для оценки вероятности безотказной работы коммутационных аппаратов с большим количеством переключений в качестве переменной величины наработки целесообразно брать количество циклов «включить» - «выключить». При оценке надежности скользящих контактов удобнее в качестве наработки брать количество проходов токоприемника по этому контакту, а при оценке надежности движущихся объектов наработку целесообразно брать в километрах пробега. Суть математических выражений оценки P(t), Q(t), f(t) при этом остается неизменной.

Средней наработкой до отказа называется математическое ожидание наработки объекта до первого отказа T 1 .

Таким образом, средняя наработка до отказа равна площади, образованной кривой вероятности безотказной работы P(t) и осями координат.

Статистическая оценка для средней наработки до отказа определяется по формуле

где N o - число работоспособных однотипных невосстанавливаемых объектов при t = 0 (в начале испытания);

t j - наработка до отказа j -го объекта.

Отметим, что как и в случае с определением P(t) средняя наработка до отказа может оцениваться не только в часах (годах), но и в циклах, километрах пробега и другими аргументами.

Интенсивность отказов - это условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не наступил. Из вероятностного определения следует, что

Статистическая оценка интенсивности отказов имеет вид:

где n(Дt) - число отказов однотипных объектов на интервале Дt ?? , для которого определяется интенсивность отказов;

N ср . ?? - число работоспособных объектов в середине интервала Дt ?? (см. рисунок 4).

Схема для определения N ср

N i - число работоспособных объектов в начале интервала t ?? ;

N ?? +1 - число работоспособных объектов в конце интервала Дt ?? .

Если при статистической оценке интенсивности отказов время эксперимента разбить на достаточно большое количество одинаковых интервалов Дt за длительный срок, то результатом обработки опытных данных будет график, изображенный на рисунке 5.


Кривая жизни объекта

Как показывают многочисленные данные анализа надежности большинства объектов линеаризованная обобщенная зависимость л(t) представляет собой сложную кривую с тремя характерными интервалами (I, II, III). На интервале II (t 2 - t 1) л = const. Этот интервал может составлять более 10 лет, он связан с нормальной эксплуатацией объектов. Интервал I (t 1 - 0) часто называют периодом приработки элементов. Он может увеличиваться или уменьшаться в зависимости от уровня организации отбраковки элементов на заводе-изготовителе, где элементы с внутренними дефектами своевременно изымаются из партии выпускаемой продукции. Величина интенсивности отказов на этом интервале во многом зависит от качества сборки схем сложных устройств, соблюдения требований монтажа и т.п. Включение под нагрузку собранных схем приводит к быстрому «выжиганию» дефектных элементов и по истечении некоторого времени t 1 в схеме остаются только исправные элементы, и их эксплуатация связана с л = const. На интервале III (t > t 2) по причинам, обусловленным естественными процессами старения, изнашивания, коррозии и т.д., интенсивность отказов резко возрастает, увеличивается число деградационных отказов. Для того, чтобы обеспечить л = const необходимо заменить неремонтируемые элементы на исправные новые или работоспособные, отработавшие время t ? t 2 . Интервал л = const соответствует экспоненциальной модели распределения вероятности безотказной работы. Здесь же отметим, что при л = const значительно упрощается расчет надежности и л наиболее часто используется как исходный показатель надежности элемента.

Гамма-процентная наработка до отказа - наработка в течение которой отказ в объекте не возникнет с вероятностью г, выраженной в процентах, иначе это минимальная наработка до отказа которую будут иметь гамма процентов объектов данного вида. Обычно г =100%.

Основным источником информации о надежности РЭО и СА на всех этапах жизненного цикла являются сведения об отказах, поэтому анализ отказов имеет исключительно важное значение для системы управления надежностью. В процессе анализа отказы классифицируют, определяют причины их возникновения, раскрывают механизм отказов и разрабатывают технические и организационные мероприятия по их предотвращению.

Классификация отказов на этапе разработки и производства приборов имеет своей целью определение факторов, которые играют доминирующую роль в выявлении причин отказов. Такими факторами могут быть конструктивные недоработки, дефекты материалов, нарушения технологического режима и установленных процедур контроля и испытаний. Причины отказов могут быть организационными и техническими. Для устранения организационных причин необходимо уточнить процедуры контроля и самоконтроля операторов, процедуры испытаний, совершенствовать технологический процесс. Для устранения технических причин следует изучить механизмы отказов с целью выработки технических мероприятий по исключению их действия.

Особое внимание при анализе отказов уделяется систематическим, или повторяющимся, отказам. Они возникают под воздействием неслучайного сочетания неблагоприятных факторов, и поэтому причины, их вызывающие, должны быть выявлены и устранены.

Методика анализа отказов предусматривает ряд последовательных действий, направленных на выявление причин и механизмов отказов. Согласно этой методике, прежде всего, проводится тщательный анализ условий возникновения отказа, при этом детально изучаются рабочие режимы.

Основные виды отказов классифицируют по:

Характеру изменения параметров объекта - постепенный, внезапный;

Связи с отказами других объектов - независимый, зависимый;

Стадии возникновения причины отказа - конструкционный, производственный, эксплуатационный, деградационный;

Устойчивости неработоспособности - самоустраняющийся, перемежающийся,

Способу обнаружения - явный, скрытый.

При постепенном отказе изменение параметра происходит без резкого скачка. Например, качество поддерживающей жидкости гирокомпаса с течением времени постепенно снижается. Такие отказы вызываются износом и старением элементов изделия, особенно изоляции токоведущих частей и подвижных электрических и механических соединений. Старение изоляции, т. е. необратимое изменение ее структурного и химического состава, происходит под действием различных эксплуатационных факторов: температуры, влажности, вибрации, электродинамических сил и др. Износ элементов подвижных электрических контактов электрических машин (коллекторов, контактных колец и щеток) вызывается механическим трением, биением рабочих поверхностей, нагревом в контакте и искрением.

Постепенное изменение электрических параметров полупроводниковых приборов и интегральных микросхем обусловлено неравномерным распределением примесей в полупроводниковом кристалле, применением структур с резко отличающимися физическими характеристиками. Возможность изменения параметров и пределы этих изменений учитываются критериями отказа. Предельные изменения параметров приборов учитываются при конструировании аппаратуры, чтобы исключить чувствительность ее выходных характеристик к этим изменениям.

В качестве примеров постепенных отказов можно привести отказы приборов, происходящие в результате возрастания обратных токов р-п-переходов за счет токов утечек, уменьшения коэффициента усиления транзисторов, возрастания прямого падения напряжения диодов, изменения уровня нуля или единицы цифровых интегральных микросхем и порогового напряжения МДП-приборов.

Внезапный отказ характеризуется скачкообразным изменением значений одного или нескольких параметров объекта. Так, перегорание предохранителя в цепи питания силового трансформатора в усилителе эхолота приводит к мгновенному выходу из строя линии приема сигналов. Такие отказы происходят в основном в результате короткого замыкания или обрыва электрической цепи (жил кабеля и приводов, резисторов, конденсаторов, полупроводниковых приборов, ИМС и др.). К общим причинам внезапных отказов РЭО и СА относятся конструкционные недостатки, низкое качество изготовления, неправильные действия судового обслуживающего персонала.

Причинами внезапных отказов могут быть как естественные постепенные изменения физической структуры прибора, которые при определенных условиях приобретают лавинообразный характер, приводящий к отказу, так и условия функционирования прибора в аппаратуре. При использовании прибора в электрическом режиме в его структуре в результате локальных флуктуаций плотности тока и перегревов могут возникать микроповреждения, которые, накапливаясь, при очередной неконтролируемой кратковременной перегрузке приводят к внезапному отказу. Характерными примерами внезапных отказов являются обрывы в структуре прибора и короткие замыкания (КЗ), возникающие в результате пробоя диэлектрических изолирующих слоев или проплавления p-n-переходов, вызываемых перегрузками. За коротким замыканием, как правило, следует обрыв, так как в местах пробоя резко возрастает плотность тока, происходит значительный разогрев образовавшейся проводящей перемычки и ее перегорание.

Деление отказов на внезапные и постепенные носит достаточно условный характер и определяется, в основном, возможностями контроля параметров объекта. Отказ классифицируется как внезапный, если ему не предшествует направленное изменение какого-либо из наблюдаемых эксплуатационных параметров, и, значит, практически невозможно прогнозировать время возникновения такого отказа. Постепенному отказу предшествует закономерное изменение эксплуатационного параметра, что позволяет прогнозировать время возникновения отказа.

Для ряда элементов постепенные отказы составляют значительную часть всех отказов.

Вероятность появления постепенных и внезапных отказов некоторых радиоэлементов представлена в табл. 3.1.

По взаимосвязи между элементами отказы принято разделять на независимые и зависимые. Если отказ определенного элемента прибора не обусловлен повреждением или отказами других элементов, его называют независимым. Например, в гирокомпасе отказ системы ускоренного приведения гиросферы в меридиан не может быть обусловлен выходом из строя системы охлаждения, так как эти системы работают независимо друг от друга.

Отказ узла пройденного расстояния в лаге может быть связан с неисправностью в узле скорости. Так как эти узлы между собой сопрягаются, то этот отказ является зависимым. Выход из строя блока питания (при отсутствии защиты от КЗ) из-за короткого замыкания в потребителе электроэнергии также может служить примером зависимого отказа.

Отказы электронных приборов, возникающие в результате процессов, происходящих в их внутренней структуре, называют независимыми. Однако весьма часты случаи, когда повреждения приборов связаны с выходом из строя предохранителей цепей защиты от перегрузок и пассивных ограничительных элементов.

Отказы приборов по указанным причинам также называют зависимыми.

При рассмотрении причин выхода из строя полупроводниковых приборов и интегральных микросхем в аппаратуре необходимо установить степень зависимости отказа приборов от отказов других элементов. Это очень важно при выборе мер по устранению последующих отказов.

По характеру устранения различают самоустраняющиеся (сбой) и перемежающиеся отказы. В судовых условиях при кратковременном выключении судовой сети может нарушиться работоспособность любого судового электрорадионавигационного прибора (ЭРНП) и средства связи. Однако при подаче питания отказ может самоустраниться. Это пример сбоя, т. е. однократно возникающего и самоустраняющегося отказа или отказа, устраняемого оператором. Если несколько сбоев одного и того же характера следуют друг за другом, происходит перемежающийся отказ прибора. Простейшим примером таких отказов служат сбои, появляющиеся в приборах из-за наличия в объеме герметичного корпуса токопроводящих частиц, способных создавать кратковременные замыкания между внутренними выводами и отдельными токопроводящими дорожками.

Самоустраняющиеся отказы могут возникать вследствие кратковременного воздействия на некоторый элемент (или элементы) устройства или системы внешних помех, а также в результате кратковременного изменения параметров элементов (кратковременное нарушение контактов, подвижных связей и т. п.).

Самоустраняющийся отказ ЭВМ сопровождается искажением информации при операциях передачи, хранения и обработки, поэтому, если не устранить последствия такого отказа, задача может оказаться неправильно решенной из-за искажения данных, промежуточных результатов или непосредственно программ. При самоустраняющемся отказе РЭО и СА, построенных на базе микропроцессоров и ЭВМ, необходимо восстанавливать достоверность информации, например, путем повторного пуска программы или ее части; в этом случае ремонт или регулировка аппаратуры, как правило, не требуется.

По степени обнаружения различают отказы:

Явные - обнаруживаются визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к использованию или в процессе его применения по назначению;

Скрытые - не обнаруживаются визуально или штатными методами и средствами контроля и диагностирования, но выявляются при техническом обслуживании или с помощью специальных методов диагностирования.

При возникновении отказа или повреждения следует выявить признаки (критерии) нарушения работоспособности объекта, выяснить причину их появления, определить характер и последствия.

Конструкционные отказы происходят в результате несовершенства или нарушения установленных правил и (или) норм конструирования объекта. Причинами, вызывающими такие отказы, могут быть неправильная оценка возможностей приборов при их выборе для изготовления аппаратуры, ошибки при ее конструировании. В результате приборы могут подвергаться перегрузкам и преждевременно выходить из строя.

Производственные отказы возникают вследствие несовершенства или нарушения установленного процесса изготовления или ремонта объекта, который выполняется на ремонтном предприятии.

При производстве радиоэлектронной аппаратуры приборы могут повреждаться в процессе входного контроля из-за неправильного выбора режимов измерений и испытаний, при установке в аппаратуру вследствие нарушения технологических режимов сборки.

Эксплуатационные отказы связаны с нарушением установленных правил и (или) условий эксплуатации объекта. Приведем пример эксплуатационного отказа. Правила включения гирокомпаса требуют, чтобы перед пуском все выключатели находились в положении «Выключено». Если оператор, нарушив это требование, оставит выключатель затухания в положении «Без затухания», что соответствует состоянию «Включено», то гирокомпас в меридиан не придет, несмотря на то, что все операции пуска будут выполнены строго в соответствии с правилами. В результате неправильных действий оператора произойдет отказ, который следует квалифицировать как эксплуатационный.

Деградационный отказ обусловлен естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления и эксплуатации.

Ресурсный отказ возникает тогда, когда объект достигает предельного состояния.

Критерий отказа - это признак или совокупность признаков нарушения работоспособного состояния объекта, установленного в нормативно-технической и (или) конструкторской (проектной) документации (например, контрольные амперметры показывают ненормальные токи в цепи питания моторов гирокомпаса). Кроме того, к критериям отказов относятся качественные признаки, указывающие на нарушение нормальной работы объекта: конкретные изменения в приборе, связанные с возникновением отказа (например, обрыв провода, деформация детали, обгорание контактов и т. п.).

Причина отказа - это явления, процессы, события и состояния, приведшие к возникновению отказа объекта. Причинами отказов могут быть нарушения правил и норм, допущенные при конструировании, производстве и технической эксплуатации, а также естественные процессы изнашивания и старения.

Последствия отказа - явления, процессы, события и состояния, обусловленные возникновением отказа объекта. Например, последствием отказа волновода в РЛС является выход из строя радиолокатора.

Классификация отказов имеет большое значение в практике эксплуатации РЭО и СА, так как позволяет определять причины отказа и устранять их.

Рассмотренные выше термины отражены в Государственных стандартах и нормативно-технической документации и являются обязательными при классификации отказов.

В процессе эксплуатации представляется возможным обнаружить и устранить ряд повреждений, которые могли бы привести к отказам, называемым предотвращаемыми. К ним относятся в основном постепенные отказы, при которых удается контролировать предшествующее им изменение характеристик РЭО.

Некоторые повреждения объекта не могут быть обнаружены и в конечном счете могут привести к непредотвращаемым отказам. К ним относятся внезапные отказы, статистические закономерности возникновения которых неизвестны.

Следует иметь в виду, что не все постепенные отказы можно предотвратить, так как часто весьма трудно определить медленные изменения параметров различных элементов РЭО и СА. Не все внезапные отказы относятся к непредотвращаемым, так как появление некоторых внезапных отказов может быть предсказано на основе изучения статистических закономерностей их возникновения во времени. Деление отказов на предотвращаемые и непредотвращаемые является условным, используется при оценке эффективности профилактических работ. Совершенствование методов контроля радиоаппаратуры приводит к тому, что все большая часть изменений параметров аппаратуры может быть обнаружена и предупреждена.

Соотношение между количеством предотвращаемых и непредо-твращаемых отказов различных типов радиоаппаратуры оценивается коэффициентом характера отказов:

где - количество предотвращаемых и непредотвра-щаемых отказов в данном типе радиоаппаратуры.

На значение коэффициента характера отказов любого типа аппаратуры большое влияние оказывают конструкционные, технологические и эксплуатационные факторы: свойства материалов и технология изготовления элементов, физические и химические воздействия на аппаратуру при эксплуатации, длительность эксплуатации и т. д.

Коэффициент характера отказов A(t) может быть определен для конкретных типов радиооборудования на основании статистических данных по отказам. Ниже приведены значения коэффициента характера отказов (в %) некоторых элементов радиоаппаратуры:

В процессе эксплуатации значительное количество отказов радиооборудования можно предотвратить путем своевременного выявления неисправностей и их устранения (настройка, регулировка и т. д.). Количество предотвращаемых отказов зависит от качества выполнения работ. Кроме того, совершенствование методов и средств контроля способствует тому, что большая часть изменений параметров ТС может быть обнаружена, а значит, и предупреждена.

Анализ отказов аппаратуры показывает, что примерно 40 - 45% всех отказов происходит из-за ошибок, допущенных при конструировании, 20% - из-за ошибок в процессе производства, 30% - в результате неправильной эксплуатации, 5 -10% - вследствие естественного износа и старения.

Причины отказов интегральных схем. В настоящее время уделяется большое внимание контролю качества электронного оборудования, однако, несмотря на это, в процессе эксплуатации часто происходят отказы отдельных компонентов или целых систем.

Выход из строя компонента может произойти по целому ряду причин, в частности из-за перегрузок по току или напряжению, чрезмерного нагревания, воздействия агрессивных химических веществ или повышенной влажности, а также некоторых условий производства и эксплуатации оборудования. Так, на начальном этапе эксплуатации отказы являются результатом производственных дефектов, ошибок проектирования или неправильного использования компонентов, а также применения дефектных компонентов, которые не были выявлены на этапе входного контроля. Большинство отказов в активный период эксплуатации происходит из-за высокой температуры и влажности, перегрузок по току и напряжению, вибрации, тепловых и механических воздействий, в дальнейшем - в результате старения компонентов. Причинами отказов, возникающих в процессе эксплуатации, могут служить коррозия, электрическая утечка, пробой изоляции, перемещение металлических ионов в направлении тока под воздействием электрического поля, а также разрушение материалов и проводников. Отказы механических компонентов, например, разъемов, происходят в результате износа контактов и увеличения их сопротивления.

Среди факторов, которые наиболее часто являются причиной выхода из строя электронного оборудования, можно выделить следующие:

Электрические перегрузки. Повреждения, вызванные электрическими перегрузками в процессе работы устройства, возникают под воздействием повышенного напряжения, тока или мощности. К таким повреждениям относятся:

Разрушение переходов и областей металлизации, а также обугливание и разрушение, связанные с перегревом отдельных областей кристаллов (в полупроводниковых устройствах);

Разрушение резистивного слоя или перегорание (плавление) провода в проволочных резисторах, появление разломов и изменение цвета корпуса (в резисторах);

Пробой диэлектрического материала и выделение тепла (в конденсаторах);

Плавление провода в обмотках, приводящее к короткому замыканию витков, чрезмерному выделению тепла в них, перегоранию или обугливанию компонента (в трансформаторах и катушках);

Электростатические разряды. Происходят из-за накопления заряда на выводах микросхем. При соприкосновении заряженного объекта с проводящей поверхностью возникает электрический разряд, приводящий к кратковременному потоку большого количества электронов в проводнике. Если при этом происходят необратимые изменения во внутренней структуре микросхемы, она выходит из строя.

К повреждениям, вызываемым электростатическими разрядами, относятся:

Разрыв тонких оксидных пленок в полупроводниковых устройствах как следствие пробоя диэлектрика;

Плавление проводников и областей металлизации из-за перегрева под воздействием высокого напряжения;

Ухудшение параметров или скрытые дефекты в структуре компонентов, которые не приводят к немедленному выходу устройства из строя, но делают работу системы неустойчивой и провоцируют эксплуатационные отказы в жестких условиях;

Наведение мощных электрических полей, приводящих к возникновению помех и сбоев в работе расположенных рядом электронных устройств.

Электромагнитные помехи и тепловой удар. Быстроменяющиеся электрические и магнитные поля способствуют появлению электромагнитных помех в проводниках. Наиболее часто источниками таких помех являются флуоресцентные лампы, промышленное и медицинское электронное оборудование, а также электробытовые приборы, использующие электродвигатели. К естественным источникам такого рода помех можно отнести грозовые разряды. Электромагнитные помехи в объекте становятся проблемой, когда имеется их источник, среда, передающая или ответвляющая помехи, и чувствительная к ним система. Электромагнитный сигнал от источника помех передается на чувствительное устройство благодаря явлениям проводимости и излучения. В первом случае помехи проникают в устройство через прямой проводящий тракт, во втором - через окружающую среду. Для того чтобы уменьшить электромеханические помехи, необходимо уже на стадии проектирования выбрать правильные схемотехнические решения и соответствующие им компоненты, правильную разводку печатных плат, специальные приемы заземления и экранирования.

Классификация отказов

Отказы классифицируют по следующим категориям: по харак-теру возникновения и возможности прогнозирования (постепен-ные, внезапные); по причине возникновения; по связи с отказа-ми других элементов; по последствиям; по методам устранения; по частоте возникновения (наработке); по трудоемкости устране-ния; по влиянию на потери рабочего времени.

По характеру (закономерности) возникновения и возможности прогнозирования различают

постепенные (монотонное измене-ние показателя технического состояния)

внезапные (скачко-образное изменение показателя технического состояния) отка-зы.

Постепенные отказы возникают в результате плавного изме-нения показателей технического состояния объекта, чаще всего вследствие изнашивания. Для постепенных отказов характерен последовательный переход изделия из начального исправного со-стояния в состояние отказа через ряд промежуточных состоя-ний.

Он характеризуется постепенным изменением одного или нескольких заданных параметров машины. Например, постепенное падение мощности двигателя из-за износа поршне-вых колец и гильз цилиндра. То же относится к уменьшению ве-личины прогиба рессоры из-за старения металла ее листов и по-тери ими упругости.

Внезапный отказ характеризуется скачкообразным изменени-ем одного или нескольких заданных параметров, определяющих работоспособность машины, вследствие превышения нагрузок, а также некачественного состояния элементов автомобиля. К таким отказам относят поломки и разрывы конструкционных (например, резиновых) материалов, поломки металлических деталей.

По причине возникновения различают отказы:

конструкционные, возникающие вследствие несовершенства конструкции;

производ-ственные — вследствие нарушения или несовершенства техноло-гического процесса изготовления или ремонта изделия; эксплуа-тационные , вызванные нарушением действующих правил (напри-мер, перегрузкой автомобиля, несвоевременным проведением технического обслуживания и т.п.).

По связи с отказами других элементов различают зависимые и независимые отказы.

Зависимым называется отказ, обусловленный отказом или неисправностью других элементов изделия.

Независи-мый отказ такой обусловленности не имеет.

Перемежающийся отказ, отличается тем, что многократно воз-никает и самоустраняется. Такой отказ, например, может возник-нуть при ослаблении крепления электрического контакта.

Последствиями отказов могут быть изъятие объекта из эксплу-атации или продолжение ее после устранения отказа.

Методами устранения отказов могут быть замена элементов или восстановление требуемой взаимосвязи между ними.

По частоте возникновения (наработке) для современных авто-мобилей различают отказы

с малой наработкой (3...4 тыс. км в зависимости от типа, марки и модели автомобиля)

средней (до 16 тыс. км)

большой (свыше 16 тыс. км)

Следует иметь в виду, что наработки между отказами существенно сокращаются при уве-личении пробега автомобиля с начала эксплуатации.

По трудоемкости устранения отказы можно разделить на требу-ющие

малую (до 2 чел.-ч)

среднюю (2 ...4 чел.-ч)

большую (свыше 4 чел.-ч) трудоемкость восстановления автомобиля.

По влиянию на потери рабочего времени отказы подразделяют на устраняемые без потери рабочего времени, т.е. при ТО или в нерабочее (межсменное) время, и отказы, устраняемые с поте-рей рабочего времени.

При организации ТО и ремонта и определении потребности в рабочей силе и средствах обслуживания важно знать распределение неисправностей по агрегатам, механизмам и узлам автомобиля. Для организации снабжения и определения соответствующих норм не-обходимо также знать и характер отказов каждой детали, их причи-ны, характер повреждения и возможность восстановления детали или изделия. В связи с этим различают восстанавливаемые и невос- станавливаемые, ремонтируемые и неремонтируемые изделия.

Виды отказов объектов

Основные понятия теории надежности

Теория надежности изучает процессы возникновения отказов технических объектов и способы борьбы с отказами. Техническими объектами могут быть изделия, системы и их элементы, в частности сооружения, установки, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали.

В последние годы область применения теории надежности расширяется, ее методы распространяются также на формализованные алгоритмы целенаправленного применения технических объектов (программы для ПК, планы систем работ) и на действия пользователя ПК как звена системы управления.

Часто в целях общности речь будет идти о системах и единичных рабочих частях систем - элементах. Система предназначена для самостоятельного выполнения определенной практической задачи. Термин элемент применяется для составной части системы. Обычно элемент не предназначается для самостоятельного практического применения вне связи с другими элементами. Примеры элементов: процессор ПК. В принципе систему можно разбить на любое число элементов, необходимое для исследования (расчета) надежности. Однако деление системы на элементы нельзя считать произвольным. Каждый элемент должен обладать способностью выполнять в системе определенные функции. Иногда ставится условие, чтобы элемент был такой частью системы, которая может быть восстановлена только путем полной замены.

Различают два основных состояния объектов: работоспособное и неработоспособное . Состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативно-технической документацией, называют работоспособным.

Состояние объекта, при котором значение хотя бы одного заданного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным нормативно-технической документацией, называют неработоспособным.

Отказ событие, заключающееся в нарушении работоспособности, т. е. в переходе в неработоспособное состояние.

Обычно неработоспособность – состояние, при котором нельзя начинать применение объекта (например, выпускать самолет в воздух). Однако возможны задачи, в которых неработоспособность – состояние, при котором объект не может продолжать выполнять свое назначение. Возможны и другие признаки неработоспособного состояния объекта (например, объект требует среднего или капитального ремонта, производительность объекта стала ниже критической и т. д.). Поэтому при оценке надежности необходимо заранее оговорить, какое состояние объекта считается неработоспособным.

Когда объект предназначен для выполнения нескольких функций, часто находят значения показателей надежности по каждой из функций.

Возможен и другой путь: оценивают свойство объекта выполнять все требуемые от него функции. Отказом считается невыполнение хотя бы одной из функций независимо от того, возникла ли случайная ситуация, в которой требуется выполнение этой функции, или нет.

Опишем еще одну постановку задачи оценки надежности, которая, к сожалению, довольно часто встречается в литературе. В этой задаче при оценке надежности учитывают случайную потребность в выполнении объектом отдельных функций.

Пусть состоящая из п элементов система предназначена для выполнения нескольких k функций. Функционирование такой системы может быть представлено как процесс изменения вектора состояний Z (t ) в пространстве состояний [x (t), y (t )], где x i – состояние i -го элемента системы, (i =1, 2, …, n ; y j – переменная, характеризующая потребность в выполнении j -й функции, j =l, 2,..., k.

Обычно предполагается, что отдельные координаты вектора Z (t ) являются независимыми случайными функциями времени (наработки), принимающими одно из двух возможных значений:

Искомые показатели «надежности» находят как числовые характеристики некоторого функционала от случайного процесса Z (t ). Понятие функционала является обобщением понятия функции. Функционал Ф определен на процессе Z (t ), если каждой траектории z (t ) ставится в соответствие некоторое число T=Ф[z (t )]. В рассматриваемом случае найденные показатели «надежности» характеризуют не техническую систему, а ситуацию по удовлетворению случайного спроса. Поэтому слово «надежность» приведено в кавычках.

Приведенные выше соображения можно пояснить таким простейшим примером. Пусть необходимо везти груз ночью через лес, в котором могут быть грабители. Человек, охраняющий груз, вооружен пистолетом. Очевидно, что значение показателя надежности этого пистолета не должно зависеть от случайной потребности в нем, т. е. от того, нападут грабители или нет.

Виды отказов объектов

Отказы можно классифицировать по различным признакам.

1. По характеру устранения можно различать окончательные (устойчивые) и перемежающиеся (то возникающие, то исчезающие) отказы. Окончательные отказы являются следствием необратимых процессов в деталях и материалах. При окончательных отказах для восстановления работоспособности объекта необходимо производить его ремонт (регулировку). Пример окончательного отказа – отказ компьютера из-за выхода из строя оперативной памяти.

Перемежающиеся отказы в большинстве случаев являются следствием обратимых случайных изменений режимов работы и параметров объектов. При возвращении режима работы в допустимые пределы объект сам, обычно без вмешательства человека, возвращается в работоспособное состояние. Например, совершенно исправный элемент компьютера может перестать реагировать на управляющий сигнал из-за случайного резкого уменьшения напряжения питания. Когда напряжение питания опять станет равным номинальному значению, этот элемент будет продолжать исправно работать (конечно, если в результате колебаний напряжения не произошел окончательный отказ).

Обычно последствия возникновения перемежающихся отказов отличаются от последствий появления окончательных отказов. Например, если из-за низкого напряжения питания нет изображения в телевизоре, то это меньшая неприятность, чем окончательный отказ кинескопа. В ряде случаев перемежающиеся отказы дают более тяжелые последствия, чем окончательные. Перемежающиеся отказы особенно неприятны в информационных системах, где они известны под названием сбоев. Появление сбоя трудно обнаружить, так как после его исчезновения объект остается работоспособным.

Таким образом, перемежающиеся отказы существенно отличаются от окончательных причиной возникновения, внешними проявлениями и последствиями проявления. Поэтому иногда целесообразно различать два показателя надежности: для окончательных отказов и для перемежающихся отказов.



2. По связи с другими отказами можно различать отказы первичные , т. е. возникшие по любым причинам, кроме действия другого отказа, и вторичные , т. е. возникшие в результате другого отказа. Например, из-за пробоя конденсатора может сгореть сопротивление. При вычислении показателей надежности обычно учитываются лишь первичные отказы.

Отказы являются случайными событиями, которые могут быть независимыми или зависимыми. Отказы являются зависимыми, если при появлении одного из них изменяется вероятность появления второго отказа. Для независимых отказов вероятность появления одного из них не зависит от того, произошли другие отказы или нет.

3. По легкости обнаружения отказы могут быть очевидными (явными или скрытыми (неявными).

4. Для каждого определенного типа объектов отказы можно различать по внешним проявлениям. Например, различные отказы конденсаторов можно разбить на две группы: типа обрыв и типа замыкание.

5. По характеру возникновения можно различать отказы внезапные , состоящие в резком, практически мгновенном изменении характеристик объектов, и отказы постепенные , происходящие за счет медленного, постепенного ухудшения качества объектов.

Внезапные отказы обычно проявляются в виде механических повреждений элементов (поломки, трещины, обрывы, пробои изоляции и т. п.), из-за чего эти отказы часто называют грубыми. Внезапные отказы получили свое название из-за того, что обычно отсутствуют видимые признаки их приближения, т. е. перед отказом обычно не удается обнаружить количественные изменения характеристик объекта.

Постепенные отказы (параметрические, плавные) связаны с износом деталей, старением материалов и регулированием устройств. Параметры объекта могут достигать критических значений, при которых его состояние считается неудовлетворительным, т.е. происходит отказ.

Внезапный отказ объекта также является следствием накопления необратимых изменений материалов. Иначе говоря, возникновение внезапного отказа также является следствием случайного процесса изменения какого-то параметра объекта. Внезапным отказ кажется лишь потому, что не контролируется изменяющийся параметр, при критическом значении которого наступает отказ объекта, обычно связанный с его механическим повреждением.

Таким образом, возникновению всякого отказа предшествует накопление тех или иных изменений внутри объекта (при этом, конечно, не рассматриваются отказы, происшедшие из-за небрежности или неумения работников).

Для объектов разного назначения и устройства применяются различные показатели надежности. В настоящее время можно выделить четыре группы объектов, различающиеся показателями и методами оценки надежности:

1) неремонтируемые объекты, применяемые да первого отказа;

2) ремонтируемые объекты, восстановление которых в процессе применения невозможно (невосстанавливаемые объекты);

3) ремонтируемые восстанавливаемые в процессе применения объекты, для которых недопустимы перерывы в работе;

4) ремонтируемые восстанавливаемые в процессе применения объекты, для которых допустимы кратковременные перерывы в работе.

Классификация объектов по показателям и методам оценки надежности приведена на рис.1, где прямоугольниками выделены перечисленные выше группы объектов.

Рис. 1. Группы объектов, различающиеся показателями надежности.

Отказы элементов систем являются основными предметами исследования при анализе причинных связей. Как показано во внутреннем кольце (рис. 4.1.2), расположенном вокруг «отказа элементов», отказы могут возникать в результате:

1) первичных отказов;

2) вторичных отказов;

3) ошибочных команд (инициированные отказы).

Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы .

Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.

Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы.

Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Примером вторичных отказов служит «срабатывание предохранителя от повышенного электрического тока», «повреждение емкостей для хранения при землетрясении». Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.

Инициированные отказы (ошибочные команды). Люди, например операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: «напряжение приложено самопроизвольно к обмотке реле», «переключатель случайно не разомкнулся из-за помех», «помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку», «оператор не нажал на аварийную кнопку» (ошибочная команда от аварийной кнопки).

Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:

Конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);

Ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);

Воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);

Внешние катастрофические воздействия (естественные внешние явления, такие как наводнение, землетрясение, пожар, ураган);

Общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);

Общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);

Неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия.

Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т. д.

Указанные выше свойства технических объектов и промышленная безопасность – взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей его безопасности.

В то же время перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png