Окружающий нас мир состоит из ~ 100 различных химических элементов. Как они образовались в естественных условиях? Подсказку для ответа на этот вопрос даёт относительная распространенность химических элементов. Среди наиболее существенных особенностей распространенности химических элементов Солнечной системы можно выделить следующие.

  1. Вещество во Вселенной в основном состоит из водорода H – ~ 90% всех атомов.
  2. По распространенности гелий He занимает второе место, составляя ~ 10% от числа атомов водорода.
  3. Существует глубокий минимум, соответствующий химическим элементам литий Li, бериллий Be и бор B.
  4. Сразу за глубоким минимумом Li, Be, В следует максимум, обусловленный повышенной распространенностью углерода C и кислорода O.
  5. Вслед за кислородным максимумом идет скачкообразное падение распространенности элементов вплоть до скандия (А = 45).
  6. Наблюдается резкое повышение распространенности элементов в районе железа A = 56 (группа железа).
  7. После A = 60 уменьшение распространенности элементов происходит более плавно.
  8. Наблюдается заметное различие между химическими элементами с четным и нечетным числом протонов Z . Как правило, химические элементы с четными Z являются более распространенными.

Ядерные реакции во Вселенной

t = 0 Большой взрыв. Рождение Вселенной
t = 10 -43 с Эра квантовой гравитации. Струны
ρ = 10 90 г/см 3 , T = 10 32 K
t = 10 - 35 с Кварк-глюонная среда
ρ = 10 75 г/см 3 , T = 10 28 K
t = 1 мкс Кварки объединяются в нейтроны и протоны
ρ = 10 17 г/см 3 , T = 6·10 12 K
t = 100 с Образование дозвездного 4 He
ρ = 50 г/см 3 , T = 10 9 K
t = 380 тыс. лет Образование нейтральных атомов
ρ = 0.5·10 -20 г/см 3 , T = 3·10 3 K
t = 10 8 лет

Первые звезды

Горение водорода в звездах
ρ = 10 2 г/см 3 , T = 2·10 6 K

Горение гелия в звездах
ρ = 10 3 г/см 3 , T = 2·10 8 K

Горение углерода в звездах
ρ = 10 5 г/см 3 , T = 8·10 8 K

Горение кислорода в звездах
ρ = 10 5 ÷10 6 г/см 3 , T = 2·10 9 K

Горение кремния в звездах
ρ = 10 6 г/см 3 , T = (3÷5)·10 9 K

t = 13.7 млрд. лет Современная Вселенная
ρ = 10 -30 г/см 3 , T = 2.73 K

Дозвездный нуклеосинтез. Образование 4 He




Космологический синтез гелия – основной механизм его образования во Вселенной. Синтез гелия из водорода в звёздах увеличивает долю 4 He по массе в барионной материи примерно на 10%. Механизм дозвёздного образования гелия количественно объясняет распространённость гелия во Вселенной и является сильным аргументом в пользу догалактической фазы его образования и всей концепции Большого Взрыва.
Космологический нуклеосинтез позволяет объяснить распространённость во Вселенной таких легчайших ядер как дейтерий (2 H), изотопы 3 He и 7 Li. Однако их количества ничтожны по сравнению с ядрами водорода и 4 He. По отношению к водороду дейтерий образуется в количестве 10 -4 -10 -5 , 3 He – в количестве ≈ 10 -5 , а 7 Li – в количестве ≈ 10 -10 .
Для объяснения образования химических элементов в 1948 году Г. Гамовым была выдвинута теория Большого взрыва. Согласно модели Гамова, синтез всех химических элементов происходил во время Большого взрыва в результате неравновесного захвата атомными ядрами нейтронов с испусканием γ-квантов и последующим β - -распадом образовавшихся ядер. Однако расчеты показали, что в этой модели невозможно объяснить образование химических элементов тяжелее Li. Оказалось, что механизм образования лёгких ядер (A < 7) связан с условиями, существовавшими во Вселенной в течение первых трех минут. Более тяжелые ядра образовались в результате ядерных реакций, происходящих при горении звезд.

Дозвездная стадия образования легчайших ядер. На этапе эволюции Вселенной через 100 с после Большого взрыва при температуре ~ 10 9 К вещество во Вселенной состояло из протонов p, нейтронов n, электронов e - , позитронов e + , нейтрино ν, антинейтрино и фотонов γ. Излучение, находилось в тепловом равновесии с электронами e - , позитронами e + и нуклонами.



В условиях термодинамического равновесия вероятность образования системы с энергией E N , равной энергии покоя нуклона, описывается распределением Гиббса . Поэтому в условиях термодинамического равновесия соотношение между числом нейтронов и протонов будет определяться разностью масс нейтрона и протона

Образование электрон-позитронных пар прекращается при Т < 10 10 К, так как энергии фотонов становятся ниже порога образования e - e + -пар (~ 1 МэВ). К концу равновесной стадии на каждый нейтрон приходилось 5 протонов. Так как на этом этапе эволюции Вселенной плотность протонов и нейтронов была велика, сильное ядерное взаимодействие между ними привело к образованию 4 He и небольшого количества изотопов Li и Be.

Основные реакции дозвездного нуклеосинтеза:

p + n → d + γ,
d + p → 3 He + γ,
3 He + n → 3 He + p
d + d → 3 He + n, 3 He + n 3 H + p,
3 H + p 4 He + ,
3 H + d 4 He + n.
3 H + p,

Так как стабильных ядер с А = 5 не существует, ядерные реакции завершаются в основном образованием 4 Не. 7 Ве, 6 Li и 7 Li составляют лишь ~ 10 –9 – 10 –12 от образования изотопа 4 Не. Практически все нейтроны исчезают, образуя ядра 4 Не. При плотности вещества ρ ~ 10 –3 – 10 –4 г/см 3 вероятность того, что нейтрон и протон не провзаимодействуют за время первичного нуклеосинтеза составляет менее 10 –4 . Так как в начале на один нейтрон приходилось 5 протонов, соотношение между числом ядер 4 Не и р должно быть ~ 1/10. Таким образом, соотношение распространенностей водорода и гелия, наблюдаемое в настоящее время, сформировалось в течение первых минут существования Вселенной. Расширение Вселенной привело к понижению её температуры и прекращению первичного дозвездного нуклеосинтеза.

Образование химических элементов в звездах. Так как процесс нуклеосинтеза на ранней стадии эволюции Вселенной закончился образованием водорода, гелия и небольшого количества Li, Be, В, необходимо было найти механизмы и условия, при которых могли образоваться более тяжелые элементы.
Г.Бете и К.Вайцзеккер показали, что соответствующие условия существуют внутри звезд. Более тяжелые ядра образовались лишь через миллиарды лет после Большого взрыва в процессе звездной эволюции. Образование химических элементов в звездах начинается с реакции горения водорода с образованием 4 Не.

Г. Бете, 1968 г.: «С незапамятных времен люди хотели знать, за счёт чего поддерживается свечение Солнца. Первая попытка научного объяснения была предпринята Гельмгольцем около ста лет назад. Она была основана на использовании самых известных в то время сил – сил всемирного тяготения. Если один грамм вещества падает на поверхность Солнца, он приобретает потенциальную энергию

E п = -GM/R = -1.91·10 15 эрг/г.

Известно, что в настоящее время мощность излучения Солнца определяется величиной

ε = 1.96 эрг/г×с.

Следовательно, если источником энергии является тяготение, запас гравитационной энергии может обеспечить излучение в течение 10 15 с, т.е. в период около тридцати миллионов лет…
В конце XIX века Беккерель, Пьер и Мария Кюри открыли радиоактивность. Открытие радиоактивности позволило определить возраст Земли. Несколько позже удалось определить возраст метеоритов, по которому можно было судить, когда в Солнечной системе появилось вещество в твердой фазе. Из этих измерений можно было установить, что возраст Солнца с точностью до 10% составляет 5 млрд. лет. Таким образом, тяготение не может обеспечить нужный запас энергии на всё это время…
С начала 30-х годов стали склоняться к тому, что звездная энергия возникла за счет ядерных реакций… Простейшей из всех возможных реакций будет реакция

H + H → D + e + + ν.

Так как процесс первичного нуклеосинтеза завершился в основном образованием ядер 4 He в результате реакций взаимодействия p + n, d + d, d + 3 He, d + 3 H и были израсходованы все нейтроны, необходимо было найти условия, при которых образовались более тяжелые элементы. В 1937 г. Г. Бете создал теорию, объясняющую происхождение энергии Солнца и звезд в результате реакций слияния ядер водорода и гелия, идущими в центре звезд. Так как в центре звезд не было достаточного количества нейтронов для реакций типа p + n, то в них могли продолжаться только реакции
p + p → d + e + + ν. Эти реакции протекали в звездах, когда температура в центре звезды достигала 10 7 К, а плотность − 10 5 кг/м 3 . То обстоятельство, что реакция p + p → d + e + + ν происходила в результате слабого взаимодействия, объясняло особенности диаграммы Герцшпрунга–Рассела.

Нобелевская премия по физике
1967 г. − Г. Бете
За вклад в теорию ядерных реакций, и особенно за открытие источника энергии звезд.

Сделав разумные предположения о силе реакций на основе общих принципов ядерной физики, я обнаружил в 1938 г., что углеродно-азотный цикл может обеспечить необходимое выделение энергии на Солнце… Углерод служит только катализатором; результатом реакции является комбинация четырех протонов и двух электронов, образующих ядро 4 He. В этом процессе испускаются два нейтрино, уносящих с собой энергию примерно 2 МэВ. Остающаяся энергия около 25 МэВ на цикл освобождается и поддерживает температуру Солнца неизменной… Это была та основа, на которой Фаулер и другие рассчитали скорости реакции в (С,N)-цикле» .

Горение водорода. Возможны две различные последовательности реакций горения водорода - преобразование четырех ядер водорода в ядро 4 He, которое может обеспечить достаточное выделение энергии для поддержания светимости звезды:

  • протон-протонная цепочка (рр-цепочка), в которой водород превращается непосредственно в гелий;
  • углеродно-азотно-кислородный цикл (CNO-цикл), в котором в качестве катализаторов участвуют ядра С, N и О.

Какая из этих двух реакций играет более существенную роль, зависит от температуры звезды. В звездах, имеющих массу, сравнимую с массой Солнца, и меньше, доминирует протон-протонная цепочка. В более массивных звездах, имеющих более высокую температуру, основным источником энергии является CNO-цикл. При этом, естественно, необходимо, чтобы в составе звездного вещества присутствовали ядра С, N и О. Температура внутренних слоев Солнца составляет 1.5∙10 7 К и доминирующую роль в выделении энергии играет протон-протонная цепочка.


Зависимость от температуры логарифма скорости V выделения энергии в водородном (pp) и углеродном (CNO) циклах

Горение водорода. Протон-протонная цепочка. Ядерная реакция

p + p → 2 H + e + + ν e + Q,

начинается в центральной части звезды при плотностях ≈100 г/см 3 . Эта реакция останавливает дальнейшее сжатие звезды. Тепло, выделяющееся в процессе термоядерной реакции горения водорода, создаёт давление, которое противодействует гравитационному сжатию и не позволяет звезде коллапсировать. Происходит качественное изменение механизма выделения энергии в звезде. Если до начала ядерной реакции горения водорода нагревание звезды происходило, главным образом, за счёт гравитационного сжатия, то теперь появляется другой доминирующий механизм – энергия выделяется за счёт ядерных реакций синтеза.

Звезда приобретает стабильные размеры и светимость, которые для звезды с массой, близкой к солнечной, не меняется в течение миллиардов лет, пока происходит «сгорание» водорода. Это самая длительная стадия звёздной эволюции. В результате сгорания водорода из каждых четырёх ядер водорода образуется одно ядро гелия. Наиболее вероятная цепочка ядерных реакций на Солнце, приводящих к этому, носит название протон-протонного цикла и выглядит следующим образом:

p + p → 2 H + e + + ν e + 0.42 МэВ,
p + 2 H → 3 He + 5.49 МэВ,
3 He + 3 He → 4 He + p + p + 12.86 МэВ

или в более компактном виде

4p → 4 He + 2e + + 2ν e + 24.68 МэВ.

Единственным источником, дающим информацию о событиях, происходящих в недрах Солнца, являются нейтрино. Спектр нейтрино, образующихся на Солнце в результате горения водорода в реакции 4p → 4 He и в CNO-цикле, простирается от энергии 0.1 МэВ до энергии ~12 МэВ. Наблюдение солнечных нейтрино позволяет осуществить непосредственную проверку модели термоядерных реакций на Солнце.
Выделяемая энергия в результате рр-цепочки составляет 26.7 МэВ. Испускаемые Солнцем нейтрино зарегистрированы наземными детекторами, что подтверждает протекание на Солнце реакции синтеза.
Горение водорода. CNO-цикл.
Особенность CNO-цикла состоит в том, что он, начинаясь с ядра углерода, сводится к последовательному связыванию 4-х протонов с образованием в конце CNO-цикла ядра 4 Не

l2 C + p → 13 N + γ
13 N → 13 C + e + + ν
13 C + p → 1 4 N + γ
14 N + p → 15 O + γ
15 O → 15 N + e + + ν
15 N + p → 12 C + 4 He

CNO-цикл

Цепочка реакций I

12 C + p → 13 N + γ (Q = 1.94 МэВ),
13 N → 13 C + e + + ν e (Q = 1.20 МэВ, T 1/2 = 10 мин),
13 C + p → 1 4 N + γ (Q = 7.55 МэВ),
14 N + p → 15 O + γ (Q = 7.30 МэВ),
15 O → 15 N + e + + ν e (Q = 1.73 МэВ, T 1/2 = 124 с),
15 N + p → 12 C + 4 He (Q = 4.97 МэВ).

Цепочка реакций II

15 N + p → 16 O + γ (Q = 12.13 МэВ),
16 O + p → 17 F + γ (Q = 0.60 МэВ),
17 F → 17 O + e + + ν e (Q = 1.74 МэВ, T 1/2 =66 c),
17 O + p → 14 N + ν (Q = 1.19 МэВ).

Цепочка реакций III

17 O + p → 18 F + γ (Q = 6.38 МэВ),
18 F → 18 O + e + + ν e (Q = 0.64 МэВ, T 1/2 =110 мин),
18 O + p → 15 N + α (Q = 3.97 МэВ).

Основное время эволюции звезды связано с горением водорода. При плотностях, характерных для центральной части звезды, горение водорода происходит при температуре (1–3)∙10 7 К. При этих температурах требуется 10 6 – 10 10 лет для того, чтобы значительная часть водорода в центре звезды переработалась в гелий. При дальнейшем повышении температуры в центре звезды могут образовываться более тяжелые химические элементы Z > 2. Звезды главной последовательности сжигают водород в центральной части, где из-за более высокой температуры ядерные реакции происходят наиболее интенсивно. По мере выгорания водорода в центре звезды реакция горения водорода начинает перемещаться к периферии звезды. Температура в центре звезды непрерывно возрастает и когда она достигнет 10 6 К начинаются реакции горения 4 Не. Реакция 3α → 12 C + γ наиболее важна для образования химических элементов. Она требует одновременного соударения трех α-частиц и возможна благодаря тому, что энергия реакции 8 Be + 4 He совпадает с резонансом возбужденного состояния 12 C. Наличие резонанса резко увеличивает вероятность слияния трех α-частиц.

Образование средних ядер A < 60. Какие ядерные реакции будут происходить в центре звезды, зависит от массы звезды, которая должна обеспечить высокую температуру за счет гравитационного сжатия в центре звезды. Так как теперь в реакциях синтеза участвуют ядра с большим Z, центральная часть звезды сжимается всё больше, температура в центре звезды повышается. При температурах несколько миллиардов градусов происходит разрушение ранее образовавшихся стабильных ядер, образуются протоны, нейтроны, α-частицы, высокоэнергичные фотоны, что приводит к образованию химических элементов всей Периодической таблицы Менделеева вплоть до железа. Образование химических элементов тяжелее железа происходит в результате последовательного захвата нейтронов и последующего β - -распада.
Образование средних и тяжелых ядер
A > 60. В процессе термоядерного синтеза в звёздах образуются атомные ядра вплоть до железа. Дальнейший синтез невозможен, так как ядра группы железа обладают максимальной удельной энергией связи. Образованию более тяжёлых ядер в реакциях с заряженными частицами - протонами и другими лёгкими ядрами − препятствует увеличивающийся кулоновский барьер тяжелых ядер.


Образование элементов 4 He → 32 Ge.

Эволюция массивной звезды M > M

По мере вовлечения в процесс горения элементов с всё большими значениями Z температура и давление в центре звезды увеличиваются со всё возрастающей скоростью, что в свою очередь увеличивает скорость ядерных реакций. Если для массивной звезды реакция горения водорода продолжается несколько миллионов лет, то горение гелия происходит в 10 раз быстрее. Процесс горения кислорода длится около 6 месяцев, а горение кремния происходит за сутки.
Распространённость элементов, расположенных в области за железом, относительно слабо зависит от массового числа А. Это свидетельствует об изменении механизма образования этих элементов. Необходимо принять во внимание то, что большинство тяжёлых ядер являются β- радиоактивными. В образовании тяжёлых элементов решающую роль играют реакции захвата ядрами нейтронов (n, γ):

(A, Z) + n → (A+1, Z) + γ.

В результате цепочки чередующихся процессов захвата ядрами одного или нескольких нейтронов с последующим β - -распадом увеличиваются массовые числа А и заряд Z ядер и из исходных элементов группы железа образуются все более тяжёлые элементы вплоть до конца Периодической таблицы.

В стадии сверхновой центральная часть звезды состоит из железа и незначительной доли нейтронов и α-частиц – продуктов диссоциации железа под действием γ- квантов. В районе
M/M = 1.5 преобладает 28 Si. 20 Ne и 16 О составляют основную долю вещества в области от 1.6 до 6 M/M. Внешняя оболочка звезды (M/M > 8) состоит из водорода и гелия.
На этой стадии в ядерных процессах происходит не только выделение энергии, но и её поглощение. Массивная звезда теряет устойчивость. Происходит взрыв Сверхновой, при котором значительная часть химических элементов, образовавшихся в звезде, выбрасывается в межзвездное пространство. Если звезды первого поколения состояли из водорода и гелия, то в звездах последующих поколений уже в начальной стадии нуклеосинтеза присутствуют более тяжелые химические элементы.

Ядерные реакции нуклеосинтеза. Е. Бербидж, Г. Бербидж, В. Фаулер, Ф. Хойл в 1957 году дали следующее описание основных процессов звездной эволюции, в которых происходит образование атомных ядер.

  1. Горение водорода, в результате этого процесса образуются ядра 4 Не.
  2. Горение гелия. В результате реакции 4 Не + 4 Не + 4 Не → 12 С + γ образуются ядра 12 С.

  3. α-процесс. В результате последовательного захвата α-частиц образуются α-частичные ядра 16 O, 20 Ne, 24 Mg, 28 Si, ...
  4. е-процесс. При достижении температуры 5∙10 9 К в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni. Ядра с А ~ 60 – наиболее сильно связанные атомные ядра. Поэтому на них заканчивается цепочка ядерных реакций синтеза, сопровождающихся выделением энергии.
  5. s-процесс. Ядра тяжелее Fe образуются в реакциях последовательного захвата нейтронов. Очень часто ядро, захватившее нейтрон, оказывается β - -радиоактивным. Прежде чем ядро захватит следующий нейтрон, оно может распасться в результате β - -распада. Каждый β - -распад повышает порядковый номер образующихся атомных ядер на единицу. Если интервал времени между последовательными захватами нейтронов больше периодов β - -распада, процесс захвата нейтронов называется s-процессом (slow). Таким образом, ядро в результате захвата нейтронов и последующих β - -распадов становится все тяжелее, но при этом оно не отходит слишком далеко от долины стабильности на N-Z-диаграмме.
  6. r-процесс. Если скорость последовательного захвата нейтронов гораздо больше скорости β - -распада атомного ядра, то оно успевает захватить сразу большое число нейтронов. В результате r-процесса образуется нейтроноизбыточное ядро, сильно удаленное от долины стабильности. Лишь затем оно, в результате последовательной цепочки β - -распадов, превращается в стабильное ядро. Обычно считается, что г-процессы происходят в результате взрывов Сверхновых.
  7. Р-процесс. Некоторые стабильные нейтронодефицитные ядра (так называемые обойденные ядра) образуются в реакциях захвата протона, в реакциях (γ ,n ) или в реакциях под действием нейтрино.

Синтез трансурановых элементов. В Солнечной системе сохранились лишь те химические элементы, время жизни которых больше возраста Солнечной системы. Это 85 химических элементов. Остальные химические элементы были получены в результате различных ядерных реакций на ускорителях или в результате облучения в ядерных реакторах. Синтез первых трансурановых элементов в лабораторных условиях был осуществлен с помощью ядерных реакций под действием нейтронов и ускоренных α-частиц. Однако дальнейшее продвижение к более тяжелым элементам оказалось таким способом практически невозможным. Для синтеза элементов тяжелее менделевия Md (Z = 101) используют ядерные реакции с более тяжелыми многозарядными ионами – углеродом, азотом, кислородом, неоном, кальцием. Для ускорения тяжелых ионов начали строиться ускорители многозарядных ионов.

Нобелевская премия по физике
1983 г. − В. Фаулер
За теоретические и экспериментальные исследования ядерных процессов важных при образовании химических элементов во Вселенной.

Год открытия Химический элемент Z Реакция
1936 Np, Pu 93, 94
1945 Am 95
1961 Cm 96
1956 Bk 97
1950 Cf 98
1952 Es 99
1952 Fm 100
1955 Md 101
1957 No 102
1961 Lr 103
1964 Rf 104
1967-1970 Db 105
1974 Sg 106
1976 Bh 107
1984-1987 Hs 108
1982 Mt 109
1994 Ds 110
1994 Rg 111
1996 Cn 112
2004 113, 115
1998 114
2000 116
2009 117
2006 118

Э.Резерфорд: «Если существуют элементы более тяжелые чем уран, то вполне вероятно, что они окажутся радиоактивными. Исключительная чувствительность методов химического анализа, основанная на радиоактивности, позволит опознать эти элементы, даже если они будут присутствовать в ничтожно малых количествах. Поэтому можно ожидать, что число радиоактивных элементов в незначительных количествах гораздо больше, чем три известных в настоящее время радиоактивных элемента. Чисто химические методы исследования окажутся малопригодными на первом этапе изучения таких элементов. Основными факторами здесь являются постоянство излучения, их характеристики и существование или отсутствие эманаций или других продуктов распада».

Химический элемент с максимальным порядковым номером Z = 118 был синтезирован в Дубне в сотрудничестве с Ливерморской лабораторией США. Верхняя граница существования химических элементов связана с их нестабильностью относительно радиоактивного распада. Дополнительная устойчивость атомных ядер наблюдается вблизи магических чисел. Согласно теоретическим оценкам должны существовать дважды магические числа Z = 108, N = 162 и Z = 114, N = 184. Период полураспада ядер, имеющих такие числа протонов и нейтронов, может составить сотни тысяч лет. Это так называемые «острова стабильности». Проблема образования ядер «острова стабильности» состоит в сложности подбора мишеней и ускоряемых ионов. Синтезированные в настоящее время изотопы 108 – 112 элементов имеют слишком малое число нейтронов. Как следует из измеренных периодов полураспада изотопов 108 – 112 элементов увеличение числа нейтронов на 6 – 10 единиц (т.е. приближение к острову стабильности) приводит к увеличению периода α-распада в 10 4 – 10 5 раз.
Так как число сверхтяжелых ядер Z > 110 исчисляется единицами, необходимо было разработать метод их идентификации. Идентификация вновь образованных химических элементов проводится по цепочкам их последовательных α-распадов, что увеличивает надежность результатов. Такой метод идентификации трансурановых элементов имеет преимущество перед всеми другими методами, т.к. основан на измерении коротких периодов α-распада. В то же время химические элементы острова стабильности по теоретическим оценкам могут иметь периоды полураспада, превышающие месяцы и годы. Для их идентификации необходима разработка принципиально новых методов регистрации, основанных на идентификации единичного числа ядер в течение нескольких месяцев.

Г. Флеров, К, Петржак: «Предсказание возможного существования новой области в периодической системе элементов Д.И. Менделеева - области сверхтяжелых элементов (СТЭ) - является для науки об атомном ядре одним из самых существенных следствий эксперимен­тального и теоретического исследований процесса спонтанного деления. Сумма наших знаний об атомном ядре, полученная на протяжении по­следних четырех десятилетий, делает это предсказание достаточно надеж­ным и. что важно, не зависящим от выбора того или иного конкретного варианта оболочечной модели. Ответ на вопрос о существовании СТЭ означал бы, пожалуй, наиболее критическую проверку самой концепции об оболочечной структуре ядра - основной ядерной модели, успешно выдерживавшей до сих пор многие испытания при объяснении свойств известных атомных ядер.
Более конкретно устойчивость самых тяжелых ядер определяется главным образом их спонтанным делением, и потому необходимым условием существования таких ядер является наличие у них барьеров относительно деления. Для ядер от урана до фермия оболочечная составляющая в барье­ре деления, хотя и приводят к некоторым интереснейшим физическим явлениям, все же не оказывает критического влияния на их стабильность и проявляется в суперпозиции с жидкокапелъной составляющей барьера. В области СТЭ капельная составляющая барьера полностью исчезает, и ста­бильность сверхтяжелых ядер определяется проницаемостью чисто оболочечного барьера.
Вместе с тем, если для принципиального существования ядер СТЭ достаточно наличия барьера, то для экспериментальной проверки такого предсказания требуется знание времени жизни ядер СТЭ относительно спонтанного деления, так как при любой конкретной постановке эксперимента по их поиску невозможно охватить весь диапазон времен жизни - от 10 10 лет до 10 -10 с. Выбор методики эксперимента существенно зависит от того, в каком интервале времен жизни проводится исследование.
Как уже говорилось, неопределенность теоретического расчета периода спонтанного деления T SF слишком велика – не менее 8–10 порядков. Эта неопределенность априори не исключает ни одной из возможностей получения или обнаружения СТЭ, и в качестве направлений экспериментального решения проб­лемы можно выбрать как поиск СТЭ в природе (на Земле, в объектах космического происхождения, в составе космического излучения и т.д.), так и искусственное получение элементов на ускорителях (в ядерных реакциях между сложными ядрами).
Очевидно, что поиск СТЭ в земных объектах может привести к успеху только при счаст­ливом стечении двух обстоятельств. С одной стороны, должен существовать эффективный механизм нуклеосинтеза, с достаточной вероятностью приводящий к образованию атомных ядер СТЭ. С другой стороны, нужно, чтобы существовал хотя бы один нуклид, принадлежащий к новой области стабильности, который имел бы время жизни, сравнимое со временем жизни Земли, – 4.5
·10 9 лет.
Если речь идет о присутствии СТЭ в объектах внеземного происхож­дении – в метеоритах, космическом излучении и т.п., то такие поиски могут привести к успеху даже в том случае, если время жизни ядер СТЭ существенно меньше 10 10 лет: такие объекты могут оказаться значительно моложе земных образцов (10 7 –10 8 лет)».

I.
Необычность гелия проявилась уже в самой историк его открытия. Как известно, этот элемент впервые обнаружили в 1868 году не на Земле, а на Солнце, точнее, в спектре солнечной короны. Конечно, никто воочию не наблюдал гелий - и подозревали, что никогда и никому не удастся его наблюдать: гелия на Земле не было. Предполагали, что наука нашла протовещество, из которого построены звезды. Впоследствии оказалось, что это не совсем так, хотя в строительном материале звезд присутствовал и гелий.
Но вот в 1895 году в английском журнале «Нейчур» друг за другом появились две статьи с одинаковым названием: «Земной гелий». Автором одной из них был известный экспериментатор В. Рамзай, открывший к тому времени химический элемент аргон, другой - В. Крукс, знаменитый своими исследованиями катодных лучей. Гелий, до сих пор наблюдавшийся только в спектре Солнца, обнаружили при анализе вполне земного минерала клевеита. Вскоре его нашли и в ряде других минералов, содержавших, как и клевеит, уран и торий.
А вот в атмосфере гелий не был найден, вернее, это случилось гораздо позднее. Такое обстоятельство, правда, никого особенно не удивило: полагали, что благодаря своей летучести гелий, как и свободный водород, давно уже ушел в мировое пространство.
Открытие земного гелия обострило интерес к проблеме происхождения химических элементов. О том, что в их основе лежит некая праматерия и что «каждый элемент превращается в природу другого элемента», догадывался еще Роджер Бэкон. Простейшим среди них, безусловно, следовало бы считать водород. Но в цепочке радиоактивных превращений упорно появлялся не водород, а гелий. Почему? Может быть, в качестве «праматерии» выступают не водород и не гелий, а какой-то другой, пока не найденный на нашей планете элемент?
Гелий обнаружили не только в солнечной короне и на Земле, но и в спектрах других звезд. Более того, выяснилось, что по распространенности в звездном веществе, так же как и вообще во Вселенной, гелий занимает второе после водорода мести.
Но вот на нашей железокремниевой планете относительное содержание гелия оказалось в десятки миллиардов раз меньшим, чем во Вселенной. На Земле вообще нет областей, о которых можно было бы сказать, что они богаты гелием. И тем не менее этот элемент присутствует повсюду: в атмосфере, океане и земной коре, в подземных газах, водах и нефти. Он рассеян по планете.
В тридцатые годы были открыты изотопы гелия. Со временем выявилась интересная закономерность: во внутренних областях метеоритов, в составе космической пыли и лунного грунта наблюдалось удивительное постоянное соотношение гелия-3 и гелия-4: 3 * 10-4, то есть на десять тысяч атомов гелия-4 приходилось в среднем три его легких изотопа. Земная же природа очень невзлюбила легкий изотоп гелия. Если гелия вообще в земных образцах мало, то гелия-3, мягко говоря, ничтожно мало: на долю легкого изотопа приходится в среднем десятимиллионная доля природного гелия.
И самым странным показалось даже не крайне низкое содержание гелия-3 в веществе Земли, а необычные вариации изотопного состава. Возникал вопрос: имеет ли какое-либо отношение распространенность гелия-3 к проблеме происхождения гелия на Земле? Теперь внимание ученых привлекла распространенность стабильных изотопов гелия в природе. Начинался второй гелиевый век.
Прежде всего: откуда взялся на Земле гелий? Предполагали, что существуют три возможных его источника.
Первый из них - это первичный, или первозданный гелий, который входил в состав вещества планеты 4,5 миллиарда лет назад и который, по-видимому, к настоящему времени планетой потеряй.
Вторым источником гелия на Земле считался радиогенный гелий, возникающий как продукт естественных ядерных реакций. Изотопное соотношение, характерное для радиогенного гелия, как правило, колеблется в пределах 10-5 - 10-10 - в зависимости от состава окружающего вещества.
И наконец гелий космогенного происхождения, который появляется в результате взаимодействия жесткого космического излучения с веществом Земли. Кроме того, он попадает в верхние слои атмосферы вместе с метеоритами и космической пылью.
О наблюдении первозданного гелия на Земле даже и не говорили: считали, что на Земле его просто не осталось. И действительно, измерения изотопного соотношения гелия земной коры упорно свидетельствовали в пользу его радиогенного, следовательно, вторичного происхождения. Однако в атмосфере нашей планеты происходили непонятные вещи. Изотопное отношение гелия было пример-" но в сто раз выше, чем для гелия, наблюдавшегося в земной коре. Известно, что попадающий в атмосферу гелий может двигаться только в одном направлении - уходить вверх, в космическое пространство. Каким же образом попадал в атмосферу этот избыточный гелий-3? Все собранные воедино мыслимые источники легкого изотопа не могли объяснить этого факта.
В свое время академик В. И. Вернадский задавал вопрос: «Почему так мало гелия на Земле? Куда он девался? Мы стоим здесь при изучении земной коры перед загадками более общего масштаба». Теперь же приходилось удивляться не тому, что гелия вообще мало на Земле, а тому, что легкого изотопа слишком «много» в атмосфере.

2.
Читатель, наверное, догадался, что коль скоро проблемы ставятся, намечены и некоторые пути к их решению. Но прежде чем переходить к «отгадкам», хотелось бы сделать маленькое отступление.
Как правило, применение принципиально новых методов исследования, расширяя наши горизонты в познании природы, неизбежно ведет к открытиям.
Среди методов исследования свойств вещества особое место занимает масс-спектрометрия разделение заряженных частиц по массам с помощью электрического и магнитного полей. Идея масс-спектрометрии со временем получила широкое " развитие. Во многих лабораториях мира появились масс-спектрометры «собственной конструкции». Выяснилось, что очень многие химические элементы состоят из смеси изотопов, но, к огорчению и недоумению исследователей, к их числу долгие годы не относился гелий.
Во многих образцах, как уже говорилось, гелий-3 содержался в гораздо меньшем количестве, чем гелий-4. Значит, нужны были приборы с высокой чувствительностью. Другая трудность - во всех пробах гелия неизбежно присутствовали ионы и молекулы, близкие по поведению в электромагнитном поле к ионам гелия-3. Как избавиться от этого фона?
Для того чтобы разорвать цепочку трудностей, необходимо было искать новые методы разделения изотопов. Одно из удачных решений было предложено учеными Ленинградского физико-технического института имени А. Ф. Иоффе Академии наук СССР.
Работа по созданию новой масс-спектрометрической методики началась в лаборатории профессора Н. И. Ионова около четверти века назад. И первые аппараты, созданные в стенах института, до сих пор работают в промышленности. Но прибор, о котором пойдет речь и которому суждено было совершить переворот в изотопии природного гелия, еще до недавнего времени существовал в одном лишь лабораторном экземпляре.
Ученые попытались разделить изотопы не только за счет их различного отклонения в магнитном поле, как это и делалось в масс-спектрометрах статических, но также и за счет их различного времени пролета. Для этого достаточно было наложить высокочастотное электрическое поле. И первые же измерения, выполненные на МРМС - магнитном резонансном масс-спектрометре, привлекли внимание специалистов. Оказалось, что качества прибора настолько высоки, что позволяли ему чувствовать присутствие в гелиевых пробах миллиардной доли легкого изотопа.
Но гелий оказался весьма капризным и трудным для измерения объектом. И не потому, что гелия-3 было очень мало в предназначенных для исследования пробах, а потому, что в окружающем нас атмосферном воздухе гелия порой было в сотни и тысячи раз больше. И если в пробу попадал хотя бы один процент атмосферного воздуха, результаты измерений искажались на сотни процентов!
Необходимо было решительно исключить попадание атмосферного воздуха в пробу и при ее отборе, и, что очень трудно, в процессе герметизации сосуда. Образцы минералов, из которых извлекали гелий, предварительно дробились и нагревались до температуры 1300 градусов по Цельсию без контакта с атмосферой. А работать приходилось С исчезающе малыми количествами этого газа: ведь гелий составлял сотые и тысячные доли процента от общего веса исследуемого вещества.
При создании МРМС ленинградские ученые столкнулись с еще одним непредвиденным свойством гелия, которое было названо «эффект памяти». Сколь идеальной ни была герметизация прибора и сколь хороший вакуум ни удавалось создать, после откачки в камере масс-спектрометра появлялось заметное количество гелия. Откуда он брался? Оказалось, что гелий, внезапно появлявшийся в приборе, в свое время проник путем диффузии в элементы конструкции и теперь при снижении давления выделялся обратно. С этим эффектом тоже приходилось бороться: остаточный гелий мог свободно конкурировать с гелием, предназначенным для исследования. А это могло затруднить любой анализ, но особенно эффект памяти мешал исследованию уникальных проб, например лунного грунта или космической пыли.

3.
Когда удалось преодолеть все эти трудности, новая масс-спектрометрическая техника открыла и новые возможности. И прежде всего это коснулось изотопии гелия.
В течение последних полутора десятилетий ленинградские ученые произвели несколько тысяч анализов изотопного соотношения гелия в самых различных природных образцах. Объектами исследования служили горные породы, минералы, вулканические и природные газы, воды и нефть, взятые буквально со всего света. Постепенно вырисовывалась картина распределения изотопов гелия в веществе Земли.
Прежде всего удалось обнаружить такую зависимость: изотопный состав гелия на Земле непостоянен, он определяется геологической историей региона, откуда были взяты пробы. Например, самые высокие изотопные соотношения - 10 - наблюдались в районах, непосредственно связанных с мантией Земли, там, где интенсивна вулканическая деятельность, где имеются разломы и трещины в земной коре и где возможен выход глубинных потоков вещества на поверхность.
В стабильных районах земной коры, где тектоническая деятельность давно закончилась, изотопное соотношение оказывалось чуть ли не в тысячу раз более низким: 2 . 10-8. Районы же, занимающие промежуточное положение по геологической активности, характеризуются и промежуточным изотопным соотношением: 10-6 - 10-7.
А вот в атмосфере изотопное соотношение гелия вновь начинает подниматься, достигая величины около 10-6. И наконец, за ее пределами, в околосолнечном пространстве, изотопное соотношение гелия оказывается достаточно высоким и постоянным, достигая своеобразной константы природы: 3 . 10-4.
Очередную гелиевую проблему можно было бы сформулировать так: почему в вулканических газах, появляющихся на поверхности в любом районе Земли, гелия-3 в сотни и тысячи раз больше, чем в образцах земной коры? Поскольку вулканические газы - естественные посланцы мантии Земли, получалось, что избыточный гелий находится в мантии. Но с одной оговоркой - этот мантийный гелий (в том числе и гелий-3) не мог иметь чисто радиогенное происхождение. Расчеты показали, что ни ядерные превращения элементов, ни попадание в земную кору космических лучей не могли объяснить наблюдаемое в мантийных газах количество гелия-3.
Оставалось только одно предположение: тот гелий, который выделяется на поверхность Земли вместе с вулканическими газами, представляет смесь радиогенного и первичного гелия. Это означало, что в недрах Земли сохранился гелий, захваченный Землей при ее образовании. По-видимому, около 4,5 миллиарда лет назад изотопное соотношение гелия молодой Земли было близко к космической константе. Но находившиеся в мантии тяжелые элементы из-за радиоактивного распада увеличивали долю гелия-4, а дегазация недр уменьшала в первую очередь количество легкого изотопа вследствие его большей летучести. Кстати, в мантии Земли сохранился не только первичный гелий, но и другие газы.
В конце 1981 года обнаружение первичного солнечного гелия в мантии Земли было зарегистрировано в Государственном реестре СССР как открытие. «Суть нашего открытия,- сказал один из его авторов, профессор Б. А. Мамырин,- заключается в том, что мы выяснили новую особенность устройства нашей планеты. Всем известно, что земной шар имеет слоистую структуру - сверху тонкая (10 - 70 километров) земная кора, далее мантия толщиной около 3 тысяч километров, внутри тяжелое ядро. Мы установили, что гелии, которыми «пропитаны» породы земной коры и породы мантии, резко отличны по изотопному составу. В гелии мантии отношение Не3Д1е4 в тысячу раз больше, чем в гелии земной коры. Это редчайший феномен природы, поскольку сдвиги в изотопном отношении для различных элементов на Земле не превышают обычно нескольких процентов».
А теперь обещанные разгадки.
Итак, представление о полной потере Землей первичного гелия не подтвердилось. Но каким же образом была обеспечена сохранность самого легкого на планете газа? Оказалось, что первичный гелий мог сохраниться до наших дней лишь в одном случае: максимальная температура Земли при ее образовании не превышала 500-700 градусов по Цельсию. Иными словами, наша планета никогда не пребывала в расплавленном состоянии, иначе первичный гелий действительно мог бы испариться. Таким образом, проблема гелия, и гелия-3 в частности, должна учитываться при обсуждении истории образования планет Солнечной системы.
Дальнейший путь гелия лежит через атмосферу. И оказалось, что именно мантия с ее высокой концентрацией легкого изотопа гелия поставляет тот самый гелий-3, содержание которого в воздухе не поддавалось объяснению.
Сам факт сохранности первичного гелия в мантии очень многое дал для изучения планеты. Через глубинные разломы в земной коре, через подводные и материковые вулканы происходит постоянный выход гелия на поверхность - он как бы просвечивает, подобно рентгену, земную кору изнутри. И вещество, мигрирующее из мантии к поверхности, всегда оказывается помеченным гелием-3. Но в земной коре преобладает радиогенный гелий, и изотопная метка растворяется, а само изотопное соотношение постепенно уменьшается. Разумеется, это очень и очень медленный процесс. Только через миллиард лет после завершения геологической активности региона в горных породах установится характерное для радиогенного гелия изотопное соотношение.
Проблема первозданного гелия уводит в те далекие от нашего века времена, когда, по представлениям ученых, Вселенная являла собой сверхплотную и сверхгорячую материю. Потом началось расширение, или, как его называют ученые. Большой взрыв. Почему это произошло, современная наука не может дать ответа. Но восстановить предполагаемый ход событий оказалось возможным.
На самых ранних стадиях эволюции Вселенная была наполнена элементарными частицами. По мере ее остывания образовались ядра дейтерия, гелия-3 и гелия-4. лишь через миллион лет Вселенная остыла настолько, что электроны смогли присоединиться к атомным ядрам и образовались первые атомы. К этому времени наша Вселенная была только водородно-гелиевой. Остальные химические элементы родиться не успели. Они возникли позднее, спустя миллиарды лет, в процессе эволюции звезд. В первозданном же веществе Вселенной было около 70 процентов водорода и 30 процентов гелия, и примерно одна десятитысячная доля этого гелия приходилась на гелий-3.
Возможно, найден еще один, помимо реликтового излучения, свидетель первых мгновений Вселенной - гелий с характерным изотопным отношением. Недаром же, перефразируя известное высказывание Архимеда, физики утверждают: «Дайте нам водород и гелий, и мы построим Вселенную».

А. Ассовская, кандидат физико-математических наук

Гелий - подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций - абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки - и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях - ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия - альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов - то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью - показать, что элемент №2 - элемент весьма необычный.


На большом воздушном шаре... Гелий применяется для приготовления дыхательных смесей, в том числе для атмосферы обитаемых космических аппаратов, для глубоководного погружения, а также для лечения астмы, для наполнения дирижаблей и воздушных шариков. Он нетоксичен, поэтому вдыхание гелия в небольших количествах вместе с воздухом совершенно безвредно.


Колосс Родосский, гигантская статуя античного бога Солнца Гелиоса. Элемент гелий был открыт спектральным методом на Солнце и лишь позднее был обнаружен на Земле.


Земной гелий

Гелий - элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер - 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы - высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия - 4Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов - в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия - половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, - это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой - самородные металлы, магнетит, гранат, апатит, циркон и другие, - прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений - явление крайне редкое.


Символ элемента, выполненный из газоразрядных трубок, наполненных гелием. Гелий светится светло-персиковым цветом когда через него проходит электрический ток.


Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·1014 м3; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий - легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся - старый улетучивался в космос, а вместо него в атмосферу поступал свежий - «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли - в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий - редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе - 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.


Гелий образуется из водорода в результате термоядерной реакции. Именно термоядерные реакции являются источником энергии для нашего Солнца и многих миллиардов других звезд.


Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.


Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.


«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16О, 20Ne, 24Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные - и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим - 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования - план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты - Юпитер V - армады кибернетических машин на криотронах (о них - ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость - необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона - конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней - реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле - 26,7 МэВ на один атом гелия.

Реакция синтеза гелия - основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3Be, 12C, 16O, 20Ne, 24Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами - элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?


Атомная структура гелия


Самый, самый...

Атом гелия (он же молекула) - прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию - 78,61 МэВ. Отсюда - феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики - меньше, чем в любом другом веществе. Отсюда - самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью - способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало - сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.


Баллоны с гелием


Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком - жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.


Баллоны с гелием


Инертный, легкий, подвижный, хорошо проводящий тепло гелий - идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле - криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена - частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».


Трубка с гелием


Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 - 2,4·10-21 секунды, гелия-6 - 0,83 секунды, гелия-8 - 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше - 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый - в 1926 г.


Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких - быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни - довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.

В честь гелия назван астероид (895) Гелио, открытый в 1918 году.


Минотавр
Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Молекулы гелия неполярны. Второго такого вещества в природе нет.

Российская Национальная Конференция по Теплообмену (РНКТ)

Средства массовой информации упорно внедряют в сознание масс мысль о том, что ""российская наука умерла"". И хотя называть эту самую науку бодрой и здоровой оснований вроде бы мало, хоронить её определённо преждевременно. Одним из доказательств живучести научных школ и приверженцев теоретической и прикладной физики является Российская Национальная Конференция по Теплообмену - своеобразная отечественная интеллектуальная олимпиада для физиков, занимающихся вопросами теплообмена. Широкая география участников, очередь заявок на участие, конкурс докладов, которые будут представлены, однозначно свидетельствуют о том, что отечественная наука жива и востребована в важнейших сферах промышленности.


Минотавр
Система пожаротушения OneU предназначена для тушения возгораний в серверных и коммуникационных шкафах 19 дюймов. Устройство газового пожаротушения OneU может быть представлено тремя типами – OneU short (автоматическое устройство газового тушения пожаров), OneU ED NG (это устройство газового пожаротушения, не имеющее встроенной аспирационной системы) и OneU DD (аспирационный извещатель также без встроенного модуля пожаротушения).


Минотавр
На что мы прежде всего обращаем внимание в ресторане? Интерьер, чистота скатертей, внешний вид обслуживающего персонала создают первое впечатление. Качество еды, уровень сервиса, соответствие ресторана нашим ожиданиям формируют основное впечатление. Публика в ресторанном зале, музыка, свет и прочий антураж дополняют образ и вносят окончательную ясность в наше восприятие заведения в целом. На что мы никогда не обращаем внимания? На безопасность. И не от террористов, бандитов или скинхедов, хотя и это важно. От опасной стихии - пожара.


Т.Захарова
С технической стороны Spark стал современнее. За счет более широкого применения в несущей конструкции высокопрочных сплавов он жестче и в то же время легче предшественника, повысился уровень пассивной безопасности. Снижение веса, улучшение аэродинамики и доработка силовых агрегатов позволили мини-Chevrolet стать еще более экономичным, а благодаря ужесточению кузова и модернизированной подвеске удалось добиться весомого улучшения управляемости.

Последствия пожаров

Понятно, что любое мало-мальски серьёзное возгорание, а тем более полноценный пожар приносит те или иные убытки, а порой и уносит человеческие жизни. Огонь – субстанция своенравная. Достаточно ему хотя бы немного выйти из-под контроля человека, как безобидный на первый взгляд огонёк разгорается в опасный пожар.

Экспериментальное познание: помехи реальные и субъективные

С первыми проблемами помех, вероятно, столкнулись те исследователи окружающего мира, которые пытались обосновать принцип действия очага в доисторической пещере, или объяснить природу дождя, выпадающего без какой-либо связи с расположением звёзд на небе. Борьба с помехами и учёт влияния помех в расчётах и численных моделях планируемых экспериментов - один из важных аспектов научного-практического исследования, о котором нельзя забывать. Неидеальные компоненты систем и устройств, неидеальные системы передачи информации, неидеальные объекты наблюдения и даже неидеальность восприятия информации человеком образуют сложный набор всевозможных помех и отклонений от истинных значений тех или иных параметров, наблюдаемых или фиктируемых с помощью даже самой сложной и вроде бы совершенной технической аппаратуры.

Назначение фольгированных цифр. Размеры надутых фольгированных фигур в виде цифр. Определение объема гелия, необходимого для надувания фольгированных цифр. Вопрос ценообразования на фигуры цифр, надутых гелием.

Значение фольгированных цифр

Фольгированные цифры используются для обозначения дат и значимых цифр при оформлении воздушными шарами. Ранее, до появления на рынке фольгированных цифр, оформителям приходилось изготавливать аналогичные цифры из латексных шаров небольшого размера, устанавливаемых на каркасе. В отношении не стандартных цифр или цифр большого размера, эта практика до сих пор сохраняется. Однако, для большинства поводов используются именно фольгированные цифры, надутые гелием или воздухом.

В стандартных случаях, фольгированные цифры прекрасно заменяют рукодельные аналоги, изготавливаемые из круглых латексных шаров. Предсказуемое качество, низкая себестоимость, высокая скорость получения результата - вот те моменты, которые определяют широкое распространение фольгированных цифр.

Промышленность постоянно расширяет ассортимент фольгированных цифр: кроме однотонных цифр (золотых, серебряных, красных, синих, розовых и пр.), выпускаются цифры содержащие орнамент, тематический рисунок или поставляются фольгированные цифры, являющиеся элементом красочного оформления.

Высота обычных фольгированных цифр

У нас в стране продаются большие фольгированные цифры (под гелий и под воздух). Встречаются предложения купить цифры разной высоты: 86 см, 91 см, 95 см, 102 см (разных производителей и поставщиков). Давайте внесем ясность: все обычные стандартные фольгированные цифры (разных производителей), в надутом состоянии, имеют одинаковую высоту: около 85 - 86 см. Высота цифр в области метра (метровые цифры) - это высота не надутых цифр.

Да, коллеги: цифры Anagram и Betallic (США), Flexmetal (Испания), обычная фольга Grabo (Италия) или даже цифры Falali (Китай, т.е. «Веселый праздник»), в надутом состоянии, имеют одинаковую стандартную высоту: около 85 - 86 см.

Даже цифры «Веселый праздник» с размерами, обозначаемые на упаковках как 34"/86 см и 40"/102 см, на самом деле, имеют одинаковую высоту (реально там изменяется только ширина цифр, ну и их объем, соответственно).

Де-факто, высота фольгированных цифр стала стандартом, которого придерживаются большинство производителей фольгированных шаров и фигур.

Объем гелия для фольгированных цифр

У многих людей, занятых в нашей профессии, возникают вопросы о количестве гелия, необходимом для надувания той или иной фигуры цифры. Кто-то хочет определить себестоимость, кто-то просто хочет «всё знать», кому-то нужно наладить учет и контролировать своих работников...

Постараемся дать ответы для всех. За основу возьмем обычные фольгированные цифры производства компании BETALLIC (США).

Данные для фольгированных цифр других производителей могут немного отличаться.

Цена гелиевых фольгированных цифр

Общий расчет продажной цены для фольгированных цифр, надутых гелием, складывается из нескольких составляющих:

  • стоимости гелия, закаченного в фольгированную цифру (см. выше);
  • стоимости самой фольгированной фигуры - цифры (цены у поставщиков);
  • учет стоимости брака надувания и брака самих цифр (общий процент брака превышает 100%, так говорит практика);
  • стоимости работы по надуванию и завязыванию фольгированных цифр;
  • торговой наценки.

Реально, торговая наценка в разы превышает себестоимость. Именно это и привлекает в нашу профессию толпы «новичков». Возможность делать бизнес с наценкой в 300 %, при условии когда свой баллон с гелием установлен на дому, и нет прочих расходов на аренду, зарплату и налоги, является для многих билетом в сказочный мир.

Однако, со временем приходит понимание, что все не так однозначно. Но это уже совсем другая история.

Всем добра и котиков.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png