Электронный осциллограф – это прибор, служащий для наблюдения и измерения параметров электрических сигналов. В нем используется отклонение электронного луча для получения изображения мгновенных значений функциональных зависимостей переменных величин, одной из которых обычно является время.

Для исследования зависимости электрического напряжения от времени исследуемое напряжение подается на вход "Y" осциллографа и включается генератор развертки, вырабатывающий линейно изменяющееся напряжение.

Для исследования зависимости одного напряжения (тока) от другого первое из указанных напряжений подается на вход "Y", а второе – на вход "Х", генератор развертки в этом случае отключается (режим Х-Y).

Существуют многолучевые и многоканальные осциллографы. В многолучевых осциллографах применяются специальные многолучевые электронные трубки, а в многоканальных – специальные коммутаторы электрических сигналов, позволяющие наблюдать несколько сигналов на экране однолучевой ЭЛТ.

Понять принцип работы электронного осциллографа поможет рисунок 1, на котором приведена структурная схема осциллографа.

Рисунок 1 - Структурная схема осциллографа

Осциллограф включает в себя:
· электронно-лучевую трубку (ЭЛТ);
· канал "Y" (канал вертикального отклонения луча), содержащий входное устройство, аттенюатор А1, предварительный усилитель А2, линию задержки сигнала, оконечный усилитель А3;
· канал "Х" (канал горизонтального отклонения луча), содержащий генератор развертки G, предварительный A5 и оконечный A6 усилители;
· канал Z (канал управления яркостью луча);
· калибровочное устройство.

Электронно-лучевая трубка
Одним из основных узлов осциллографа является электронно-лучевая трубка. Она представляет собой стеклянный баллон с высоким вакуумом, в котором имеется система электродов и экран, покрытый люминофором. При попадании на экран электронов наблюдается свечение. В цилиндрической части трубки расположены катод, модулятор, первый и второй аноды, две пары отклоняющих пластин. Источником электронов является оксидный катод. Катод подогревается с помощью нити накала, изолированной от катода. Систему электродов (катод, цилиндрический модулятор, первый и второй аноды) называют электронной пушкой. На модулятор относительно катода подают отрицательный потенциал, величину которого регулируют переменным резистором и этим самым изменяют яркость светящегося пятна на экране ЭЛТ. Первый анод используется для фокусировки электронного луча. Второй анод служит для ускорения электронов. Некоторые трубки имеют третий анод, позволяющий повысить яркость свечения экрана.
Последняя буква в условном обозначении ЭЛТ указывает тип люминесцентного покрытия экрана: А – покрытие дает голубое свечение и малую продолжительность послесвечения, В – длительное послесвечение (порядка нескольких секунд), И – покрытие дает зеленое свечение средней продолжительности. Длительность послесвечения ЭЛТ можно оценить экспериментально, не подключая ЭЛТ. С этой целью освещают в течение нескольких секунд экран ЭЛТ карманным фонариком и, выключив фонарик, наблюдают в темноте уменьшение с течением времени яркости свечения экрана. Покрытие типа И благоприятно для визуального наблюдения сигналов с частотой выше 10 Гц.

Канал "Y"
Входное устройство канала "Y" включает в себя соединительный кабель, переключатель входа и входные делители напряжения.

Соединительный кабель служит для согласования выхода источника сигнала со входом осциллографа во всем рабочем диапазоне частот (согласование характеризуют коэффициентом стоя­чих волн), а также защиты от влияния внешних мешающих электромагнитных полей. Соединительный кабель обычно является коаксиальным (рисунок 2).

Рисунок 2 - Коаксиальный кабель

Коаксиальный кабель имеет внутренний проводник 1, который цилиндрическим изолятором 2 отделен от внешней проводящей оболочки 3 (оплетки). Эта оболочка обычно также покрывается защитной изоляцией 4. Оплетка изготавливается из большого числа тонких медных проводников. Один конец коаксиального кабеля обычно имеет разъем для подключения к прибору, а ко второму присоединяются два проводника. Проводник, соединенный с оплеткой, выбирается, как правило, с изоляцией черного цвета. Проводник, подключаемый к центральной жиле кабеля, называют сигнальным. Проводящая оболочка кабеля подключается к корпусу измерительного прибора.С помощью переключателя входа можно выбрать один из двух способов подачи сигнала к предвари­тельному усилителю: через конденсатор (закры­тый вход) или непосредственно – для сигналов постоян­ного тока и импульсов большой длительности (открытый вход).

Аттенюатор А1
Применяется для ослабления входного сигнала в случае, если уровень входного сигнала слишком высок.

Предварительный усилитель А2 канала вертикального отклонения предназначен для усиления исследуемого сигнала, преобразования сигнала из несимметричного в симметричный, установки изображения сигнала (совместно с аттенюатором во входном устройстве) в пределах рабочей части экрана по вертикали, обеспече­ния совместной работы с коммутатором в многоканальных осциллографах.

Линия задержки , включаемая в канал вертикального отклонения осциллографов, позволяет задержать сигнал на время, необходимое для запуска генератора развертки. При отсутствии линии задержки на экране осциллографа не будет виден передний фронт исследуемого сигнала. Линия задержки не должна искажать форму исследуемого сигнала.

Оконечный усилитель канала вертикального отклонения А3 луча обеспечивает усиление исследуемого сигнала до значения, достаточного для от­клонения луча ЭЛТ по вертикали в пределах рабочей части экрана.

Если исследуемое напряжение (при необходимости оно усиливается усилителем) подано только на пластины “Y”, то на экране осциллографа будет видна вертикальная линия, длина которой равна удвоенной амплитуде колебаний. Для изучения изменения сигнала с течением времени необходимо подать напряжение на горизонтально отклоняющие пластины. Напряжение для отклонения луча в горизонтальном направлении подается с выхода канала "Х", содержащего генератор развертки, устройство синхронизации, предварительный (на структурной схеме не показан) и оконечный усилители Х.

Канал "Х"
Генератор развертки G
Вырабатывает пилообразное (линейно изменяющееся напряжение), которое предназначено для равномерного перемещения луча вдоль оси Х от левого до правого края экрана, а затем быстрого возвращения его в крайнее левое положение. Обратный ход луча на экране соответствует участкам быст­рого изменения пилообразного напряжения.

Частоту напряжения, вырабатываемого генератором развертки, можно ступенчато и плавно менять в достаточно больших пределах (как правило, от 10 Гц до 1 МГц и более).

Если напряжение на входе “Y” равно нулю, но включен генератор развертки G, на экране будет видна горизонтальная линия. При наличии двух напряжений одновременно (входного и с генератора развертки G) на экране будет видна осциллограмма исследуемого сигнала.

Генератор развертки G в канале Х может иметь три режима работы:
автоколебатель­ный , т.е. периодический (для наблюдения синусоидальных и импульсных сигналов с небольшой скважностью),
жду­щий (для наблюдения исследуемых сигналов с большой и переменной скважностью),
одиночной–разовой разверт­ки (для фотографирования, а в запоминающих осцилло­графах и для непосредственного изучения одиночных сиг­налов).
В ждущем режиме генератор развертки G начинает вырабатывать пилообразное напряжение, если на вход Y осциллографа поступает исследуемый сигнал достаточной амплитуды (в этом режиме, например, не удается обеспечить внутреннюю синхронизацию при исследовании выпрямленного напряжения с малым коэффициентом пульсаций). В некоторых осциллографах имеется ре­жим растяжки развертки, позволяющий получить более крупный масштаб изображения по горизонтальной оси за счет увеличения усиления в конечном усилителе X.

Синхронизация
Чтобы получить неподвижное изображение, частота генератора развертки G должна быть равна или в целое число раз меньше частоты исследуемого сигнала. С этой целью осуществляют синхронизацию частоты генератора развертки G (согласовывают во времени) с частотой исследуемого сигнала. Когда частота генератора развертки G близка частоте исследуемого напряжения, то это напряжение изменяет частоту генератора развертки G до точного совпадения с частотой исследуемого сигнала.

Существует три варианта синхронизации: внешняя , внутренняя и от сети .
Синхронизацию от сети применяют для исследования сигналов, частота которых равна или кратна частоте питающей сети (50 Гц).
Осциллографы снабжаются пе­реключателем вида синхронизации и переключателем по­лярности синхронизирующего напряжения.

Наиболее часто используют внутреннюю синхронизацию. В этом случае исследуемое напряжение подается на канал "Y", часть исследуемого напряжения подается на генератор развертки G. Исследуемое напряжение как бы “навязывает” свой период генератору развертки. Если при этом период собственных колебаний генератора развертки почти равен (или почти кратен) периоду колебаний исследуемого напряжения, то колебания генератора синхронизируются и происходят в такт с исследуемым напряжением.

При внешней синхронизации, в отличие от внутренней, на генератор развертки G подается напряжение от внешнего источника сигнала по каналу "X". Колебания генератора развертки синхронизируются с внешним сигналом.

Оконечный усилитель A6 канала Х предназначен для уси­ления напряжения развертки или внешнего сигнала до значе­ния, достаточного для отклонения луча в пределах экрана по горизонтали.

Канал Z
В основном предназначен для подсветки прямого хода развертки и гашения луча во время обратного хода. Канал Z позволяет модулировать яркость изображения внешним модулирующим сигналом. Если на входы X и Y подать сигналы одной и той частоты, а на канал Z напряжение более высокой известной частоты, то по прерывистой эллиптической развертке можно определить частоту сигнала, подаваемого на входы X и Y.

Встроенные в осциллограф калибраторы повышают точность измерения частоты и амплитуды сигнала. Калибратор представляет собой генератор напряжения с известной амплитудой и частотой. Чаще всего используются постоянные напряжения и напряжения в виде меандра (прямоугольные импульсы напряжения со скважностью равной двум, т.е. длительность импульса равна длительности паузы).

При проведении исследований с помощью электронного осциллографа обязательно надо обращать внимание на полосу пропускания канала вертикального отклонения.

Электронно-лучевые (электронные) осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов. Возможность наблюдения изменяющихся во времени сигналов делает осциллографы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографов являются широкий частотный диапазон, высокая чувствительность и большое входное сопротивление. Все это обусловило их широкое практическое применение.

В настоящее время выпускается множество осциллографов, различающихся назначением и характеристиками. Осциллографы могут быть предназначены для наблюдения и измерения непрерывных или импульсных процессов; большое распространение получили универсальные осциллографы для периодических и непериодических сигналов непрерывного и импульсного характера в широком (до 100 МГц) диапазоне частот. Выпускаются также осциллографы специального назначения: многофункциональные со сменными входными блоками, запоминающие для регистрации одиночных импульсов, стробоскопические для исследования высокочастотных процессов и другие. По количеству одновременно исследуемых сигналов осциллографы могут быть одноканальными и многоканальными (в основном двухканальными). В последнее время получили распространение цифровые электронные осциллографы.

Осциллографы могут различаться чувствительностью, полосой пропускания, погрешностью воспроизведения формы кривой и другими характеристиками.

Рассмотрим устройство и принцип действия наиболее распространенных универсальных электронно-лучевых осциллографов.

В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электронно-лучевой трубки.

Электронно-лучевые трубки.

Простейшая однолучевая трубка (ЭЛТ) представляет собой стеклянный баллон, из которого откачан воздух и в котором расположены (рис. 6-22) подогреваемый катод модулятор (сетка) М, фокусирующий анод ускоряющий анод две пары взаимно перпендикулярных отклоняющих пластин (горизонтальные и вертикальные отклоняющие пластины). Внутренняя поверхность дна баллона (экран Э) покрыта люминофором, способным светиться под действием бомбардировки электронами. Совокупность электродов К,

Рис. 6-22. Схема управления лучом электронно-лучевой трубки

Называют электронной пушкой. Конструктивно эти электроды выполнены в виде цилиндров, расположенных по оси трубки. Электронная пушка излучает узкий пучок электронов - электронный луч. Для этого на электроды пушки подают напряжение, как показано на рис. 6-22, где - цепи управления электронным лучом. Интенсивность электронного луча регулируют путем изменения отрицательного относительно катода напряжения на модуляторе, что приводит к изменению яркости свечения люминофора. Напряжение на первом аноде фокусирует поток электронов в узкий луч, позволяющий получить на экране трубки светящееся пятно малого размера. Для ускорения электронов до скорости, необходимой для свечения люминофора, на второй анод подается высокое положительное напряжение. Сформированный электронный луч проходит между парами отклоняющихся пластин и под действием напряжений, приложенных к этим пластинам, отклоняется, соответственно, по осям координат , вызывая смещение светящегося пятна на экране трубки. На рис. 6-22 также показана упрощенная схема управления начальной установки луча по оси (по оси X управление аналогичное). Меняя положение подвижного контакта переменного резистора («Смещение К»), можно изменять напряжение на пластинах и тем самым смещать луч по экрану.

При исследовании быстропротекающих процессов с малой частотой повторения или однократных импульсов электронный луч не успевает возбудить в достаточной мере люминофор и яркость свечения может оказаться недостаточной. Поэтому в современных электронно-лучевых трубках применяют дополнительное ускорение электронов при помощи третьего анода подавая на него большое положительное напряжение.


Рис. 6-23. Функциональная схема электронно-лучевого осциллографа

Осциллографические электронно-лучевые трубки характеризуются чувствительностью, полосой пропускания, длительностью послесвечения, рабочей площадью экрана, цветом свечения люминофора и другими характеристиками.

Чувствительность трубки где - отклонение луча на экране трубки, вызванное напряжением приложенным к отклоняющим пластинам. Обычно С увеличением частоты напряжения чувствительность трубки падает. Верхняя частота полосы пропускания трубки равна такой частоте, при которой ее чувствительность уменьшается до значения (на 3 дБ), где - чувствительность на малых частотах. У рассматриваемых электронно-лучевых трубок верхняя частота примерно 100 МГц.

Длительность послесвечения экрана характеризуют временем от момента прекращения действия электронного луча до момента, когда яркость изображения составит 1 % первоначальной. Трубки с длительным послесвечением (более 0,1 с) облегчают наблюдение непериодических и медленно изменяющихся сигналов. Специальные запоминающие трубки позволяют сохранить изображение сигнала на интервалы времени от нескольких минут до нескольких суток.

Рабочая площадь экрана определяется диаметром трубки. Выпускают трубки с диаметром 70 мм и более. Тип люминофора определяет цвет свечения экрана. Обычно находят применение трубки с зеленым цветом свечения. Для фотографирования изображения с экрана осциллографа используют трубки с голубым свечением экрана.

В современных осциллографах применяют также и более сложные, в частности, многолучевые трубки для наблюдения сразу двух и более сигналов, трубки с линией бегущей волны для наблюдения за сверхвысокочастотными колебаниями и др.

Рис. 6-24. Форма напряжения линейной развертки

Устройство и принцип действия осциллографа.

Упрощенная функциональная схема осциллографа (рис. 6-23) включает в себя электронно-лучевую трубку ЭЛТ, входной делитель напряжения ВДУ усилитель вертикального отклонения УВО, состоящий из предварительного усилителя ПУ, линии задержки и выходного усилителя ВУ, блок синхронизации БС, генератор развертки ГРУ усилитель горизонтального отклонения УГО и калибраторы амплитуды и длительности КД.

Исследуемый сигнал подается на вход канала вертикального отклонения, включающего в себя входной делитель и усилитель вертикального отклонения. Выходное напряжение УВО, поступая на вертикальные отклоняющие пластины, управляет отклонением электронного луча в трубке по оси Для получения требуемого размера изображения на экране входной сигнал усиливается (или ослабевает) в канале вертикального отклонения до необходимого значения, определяемого чувствительностью трубки. Последовательное включение делителя напряжения и усилителя вертикального отклонения обеспечивает значительный диапазон исследуемых напряжений. Основное усиление УВО обеспечивается предварительным усилителем ПУ, а выходной усилитель ВУ в основном служит для преобразования усиливаемого сигнала в управляющее напряжение, подаваемое на отклоняющие пластины.

При подане переменного напряжения на вход электронный луч вычерчивает на экране осциллографа вертикальную линию. Для получения изображения исследуемого сигнала, развернутого во времени, необходимо смещать (развертывать) луч по оси X с равномерной скоростью. Это осуществляется подачей на отклоняющие пластины линейно изменяющегося пилообразного напряжения (рис. 6-24). Принцип развертки изображения иллюстрируется рис. 6-25, где даны кривые изменения напряжения их и подаваемые на пластины и получающееся при этом изображение на экране осциллографа. Цифрами 1-4, 1-4 обозначены точки кривых в соответствующие моменты времени. Из рисунка видно, что при равенстве периодов напряжений их и на экране получается неподвижное


Рис. 6-25. Временные диаграммы, поясняющие получение осциллограмм при линейной развертке

изображение одного периода исследуемого сигнала. При увеличении периода пилообразного напряжения их в раз на экране появится изображение периодов исследуемого сигнала.

Напряжение развертки вырабатывает генератор развертки Реальная кривая напряжения развертки (см. рис. 6-24) имеет время прямого и время обратного хода - время возвращения луча в исходное положение. Для того чтобы во время обратного хода электронный луч не вычерчивал линии на экране осциллографа, его гасят на это время путем подачи отрицательного импульса на модулятор. Исследование сигналов в широком диапазоне частот обеспечивается переключением частоты пилообразного напряжения, предусмотренном в генераторе развертки. Это позволяет проводить наблюдения исследуемых сигналов в нужном масштабе времени. Выходное напряжение генератора усиливается в до значения, необходимого для управления электронным лучом в и получения изображения требуемого размера.

Для получения устойчивого изображения на экране осциллографа частота пилообразного напряжения развертки должна быть кратна частоте исследуемого сигнала. Выдержать точно кратность частот напряжений их и на практике оказывается достаточно сложно вследствие «ухода» частоты генератора и изменения частоты исследуемого сигнала. Это приводит к неустойчивости изображения сигнала. Для обеспечения


Рис. 6-26. Временные диаграммы, поясняющие получение изображения сигналов при ждущей развертке

устойчивости изображения в осциллографе имеется блок синхронизации (см. рис. 6-23), который осуществляет изменение частоты генератора (в некоторых пределах) в соответствии с частотой исследуемого процесса. Для этого сигнал из канала вертикального отклонения подается на блок синхронизации, на выходе которого вырабатываются импульсы синхронно с изменением исследуемого сигнала для управления генератором развертки, принудительно заставляя его работать с частотой, кратной частоте входного сигнала. Такой режим работы генератора развертки называется непрерывным. Он применяется при наблюдении периодических сигналов. При исследовании непериодической последовательности импульсов или одиночных импульсов непрерывный режим работы приводит к тому, что положение изображения импульсов на экране по оси времени становится неопределенным. В этом случае применяют ждущий режим работы генератора, при котором вырабатывает пилообразный импульс только с приходом исследуемого импульса. При таком режиме обеспечивается устойчивое положение изображения этих импульсов на экране. Рисунок 6-26 иллюстрирует ждущий режим работы где показаны входные импульсы (рис. 6-26, а), пилообразные импульсы иГР (рис. 6-26, б) генератора развертки и изображение на экране осциллографа (рис. 6-26, в).

В осциллографах предусматривается также возможность запуска генератора от внешнего источника (внешняя синхронизация). Для этого имеется специальный вход «Вход синхронизации» и переключатель

Исследование импульсных и особенно непериодических сигналов имеет ряд особенностей. В частности, генератор развертки вследствие своей инерционности вырабатывает пилообразное напряжение с некоторым запаздыванием отношению к запускающему импульсу. Это может привести к тому, что начальная часть импульса не будет развернута во времени на экране (рис. 6-27, а). Для устранения таких искажений в канале

Рис. 6-27. Временные диаграммы, поясняющие назначение линии задержки

вертикального отклонения имеется линия задержки осуществляющая временной сдвиг (задержку) на некоторое время сигнала, подаваемого на пластины (рис. 6-27, б, где - напряжение на выходе Такая задержка позволяет получить изображение всего импульса, включая его начальную часть, на экране осциллографа. В низкочастотных осциллографах, предназначенных для исследования периодических процессов, линия задержки может отсутствовать.

Для расширения функциональных возможностей осциллографа имеются дополнительные входы, позволяющие осуществить управление электронным лучом. Во многих осциллографах предусмотрена возможность управления отклонением луча по оси X внешним напряжением. Для этого у осциллографа есть «Вход X» (см. рис. 6-23), на который подается внешнее управляющее напряжение, и переключатель устанавливаемый в этом случае в нижнее (по схеме) положение. В осциллографах имеются также зажимы «Вход пластин X» и «Вход пластин У», позволяющие подавать внешнее напряжение непосредственно на пластины электронно-лучевой трубки. В некоторых осциллографах имеется вход который через разделительный конденсатор (или специальный усилитель) соединен с модулятором М электронно-лучевой трубки. Подавая импульсы напряжения на этот вход, можно модулировать (изменять) яркость свечения изображения на

экране. Это позволяет, например, отмечать характерные точки на изображении, подавая импульсы на вход в необходимые моменты времени.

При измерении амплитудных и временных параметров исследуемых сигналов обычно измеряют соответствующие геометрические размеры изображения сигнала на экране и с помощью коэффициентов отклонения и коэффициентов развертки (см. далее), характеризующих чувствительность каналов, определяют значения этих параметров. Для повышения точности измерений осциллографы имеют калибраторы амплитуды и длительности позволяющие контролировать и устанавливать номинальные значения коэффициентов отклонения и коэффициентов развертки. Калибраторы часто представляют собой генераторы прямоугольных импульсов с известными значениями амплитуды и частоты. Для проверки коэффициентов отклонения переключатель (см. рис. 6-23) ставится в положение «Калибровка». Меняя усиление УВО, добиваются нормированного отклонения луча на экране, что приводит к установке соответствующего коэффициента отклонения. По периоду калибровочного импульса можно проверить или установить нормированное значение коэффициента развертки. В некоторых осциллографах КД представляет собой стабильный по частоте генератор, выход которого при измерении подключается к модулятору ЭЛТ. Сигнал генератора вызывает появление на экране чередующихся светлых и темных участков. По их числу, зная частоту генератора КД, можно определить временные параметры исследуемых сигналов.

Основные характеристики осциллографов.

Коэффициент отклонения - отношение напряжения входного сигнала к отклонению луча (в делениях шкалы), вызванному этим напряжением. У наиболее распространенных осциллографов коэффициент отклонения находится в диапазоне . Коэффициент отклонения - параметр, обратный чувствительности осциллографа к напряжению:

Полоса пропускания - диапазон частот, в пределах которого коэффициент отклонения изменяется не более чем на 3 дБ (примерно относительно его значения на некоторой средней (опорной) частоте. Для низкочастотных осциллографов полоса пропускания находится в диапазоне от 0 до 1-5 МГц; для универсальных осциллографов верхняя частота достигает десятков мегагерц, для высокочастотных - сотен мегагерц.

Для измерения импульсных сигналов важными являются параметры переходной характеристики - время нарастания переходной характеристики и максимальный выброс.

Коэффициент развертки - отношение времени к отклонению луча, вызванному напряжением развертки за это время.

Обычно осциллографы имеют широкий диапазон изменения коэффициента развертки. Например, у осциллографа коэффициент развертки находится в диапазоне . Коэффициент развертки - параметр, обратный скорости перемещения луча по оси X.

Основная погрешность измерения напряжения и основная погрешность измерения временных интервалов определяются максимально допускаемыми погрешностями измерения соответствующих параметров при подаче на вход осциллографа стандартного сигнала синусоидальной или прямоугольной формы. В зависимости от значений этих погрешностей выпускают осциллографы четырех классов точности имеющих, соответственно, основные погрешности измерений, не превышающие Часто вместо основных погрешностей измерений нормируют основные погрешности коэффициента отклонений и коэффициента развертки, а также нелинейность отклонения и развертки.

Параметры входов осциллографа определяются входным активным сопротивлением и входной емкостью Обычно , а составляет десятки пикофарад. Для высокочастотных осциллографов составляет единицы пикофарад.

Осциллографы характеризуются и другими параметрами, например: максимально допустимым входным напряжением, размерами рабочей части экрана, потребляемой мощностью, габаритами, массой и др.

Электронно-лучевые осциллографы .

Электронно-лучевые осциллографы – приборы, предназначенные для визуального наблюдения форм исследуемых электрических сигналов. Кроме того, осциллографы могут применяться для измерения частоты, периода и амплитуды.

Основная деталь электронного осциллографа - электронно-лучевая трубка (смотри рисунок), напоминающая по форме телевизионный кинескоп.

Экран трубки (8) покрыт изнутри люминофором - веществом, способным светиться под ударами электронов. Чем больше поток электронов, тем ярче свечение той части экрана, куда они попадают. Испускаются же электроны так называемой электронной пушкой, размещенной на противоположном от экрана конце трубки. Она состоит из подогревателя (нити накала) (1) и катода (2). Между “пушкой” и экраном размещены модулятор (3), регулирующий поток летящих к экрану электронов, два анода (4 и5), создающих нужное ускорение пучку электронов и его фокусировку, и две пары пластин, с помощью которых электроны можно отклонять по горизонтальной Y (6) и вертикальной X (7) осям.

Работает электроннолучевая трубка следующим образом:

На нить накала подают переменное напряжение, на модулятор постоянное, отрицательной полярности по отношению к катоду на аноды - положительное, причем на первом аноде (фокусирующем) напряжение значительно меньше, чем на втором (ускоряющем). На отклоняющие пластины подается как постоянное напряжение, позволяющее смещать пучок электронов в любую сторону, относительно центра экрана, так и переменное, создающее линию развертки той или иной длины (пластины Пх), а также ”рисующей” на экране форму исследуемых колебаний (пластины Пу).

Чтобы представить, как получается на экране изображение, экран трубки представим в виде окружности (хотя у трубки он может быть и прямоугольный) и поместим внутри нее отклоняющие пластины (см. рисунок). Если подвести к горизонтальным пластинам Пх пилообразное напряжение, на экране появится светящаяся горизонтальная линия - ее называют линией развертки или просто разверткой. Длина ее зависит от амплитуды пилообразного напряжения.

Если теперь одновременно с пилообразным напряжением, поданным на пластины Пх, подать на другую пару пластин (вертикальных - Пу), например, переменное напряжение синусоидальной формы, линия развертки в точности “изогнется” по форме колебаний и “нарисует” на экране изображение.

В случае равенства периодов синусоидального и пилообразного колебаний, на экране будет изображение одного периода синусоиды. При неравенстве же периодов на экране появится столько полных колебаний, сколько периодов их укладывается в периоде колебаний пилообразного напряжения развертки. В осциллографе имеется регулировка частоты развертки, с помощью которой добиваются нужного числа наблюдаемых на экране колебаний исследуемого сигнала.

Структурная схема осциллографа.

На рисунке изображена структурная схема осциллографа. На сегодняшний день существует большое число различных по конструкции и назначению осциллографов. По-разному выглядят их лицевые панели (панели управления), несколько отличаются названия ручек управления и переключатели. Но в любом осциллографе существует минимально необходимый набор узлов, без которых он не может работать. Рассмотрим назначение этих основных узлов. На примере осциллографа С 1-68.


На рисунке:

ВА- входной аттенюатор; ВК- входной каскад усилителя; ПУ- предварительный усилитель; ЛЗ- линия задержки; ВУ- выходной усилитель; К- калибратор; СБ- схема блокировки; УП- усилитель подсвета; СС- схема синхронизации; ГР- генератор развертки; ЭЛТ- электроннолучевая трубка.

Схема работает следующим образом.

Блок питания

Блок питания обеспечивает энергией работу всех узлов электронного осциллографа. На вход блока питания поступает переменное напряжение, как правило, величиной 220 В. В нем оно преобразуется в напряжения разной величины: переменное 6,3 В для питания нити накала электронно-лучевой трубки, постоянное напряжение 12-24 В для питания усилителей и генератора, около 150 В для питания оконечных усилителей горизонтального и вертикального отклонения луча, несколько сотен вольт для фокусировки электронного луча и несколько тысяч вольт для ускорения электронного пучка.

Из блока питания кроме выключателя питания, выведены на переднюю панель осциллографа регуляторы: “ФОКУСИРОВКА” и “ЯРКОСТЬ” При вращении этих ручек изменяются напряжения, подаваемые на первый анод и модулятор. При изменении напряжения на первом аноде, меняется конфигурация электростатического поля, что приводит к изменению ширины электронного луча. При изменении напряжения на модуляторе изменяется ток электронного луча (изменяется кинетическая энергия электронов), что приводит к изменению яркости свечения люминофора экрана.

Генератор развертки

Выдает пилообразное напряжение, частоту которого можно изменять грубо (ступенями) и плавно. На лицевой панели осциллографа они называются “ЧАСТОТА ГРУБО” (или “ДЛИТЕЛЬНОСТЬ РАЗВЕРТКИ”) и “ЧАСТОТА ПЛАВНО”. Диапазон частот генератора весьма широк - от единиц герц до единиц мегагерц. Около переключателя диапазонов проставлены значения длительности (продолжительности) пилообразных колебаний.

Усилитель канала горизонтального отклонения

С генератора развертки сигнал подается на усилитель канала горизонтального отклонения (канала X). Этот усилитель необходим для получения такой амплитуды пилообразного напряжения, при которой электронный луч отклоняется на весь экран. В усилителе расположены регулятор длины линии развертки, на передней панели осциллографа он называется “УСИЛЕНИЕ X“ или “ АМПЛИТУДА X”, и регулятор смещения лини развертки по горизонтали.

Канал вертикальной развертки

Состоит из входного аттенюатора (делителя входного сигнала) и двух усилителей - предварительного и оконечного. Аттенюатор позволяет выбирать нужную амплитуду рассматриваемого изображения в зависимости от амплитуды исследуемых колебаний. С помощью переключателя входного аттенюатора, амплитуду сигнала можно уменьшить. Более плавные изменения уровня сигнала, а значит и размера изображения на экране, получают с помощью регулятора чувствительности оконечного усилителя канала Y. В оконечном усилителе этого канала, как и канала горизонтального отклонения, есть регулировка смещения луча, а значит, и изображения, по вертикали.

Кроме того, на входе канала вертикального отклонения стоит переключатель 1, с помощью которого можно либо подавать на усилитель постоянную составляющую исследуемого сигнала, либо избавляться от нее включением разделительного конденсатора. Это в свою очередь, позволяет пользоваться осциллографом как вольтметром постоянного тока, способным измерять постоянные напряжения. Причем входное сопротивление канала Y достаточно высокое - более 1 МОм.

О ДРУГИХ РЕГУЛИРОВКАХ

У генератора развертки есть еще один переключатель - переключатель режима работы развертки. Он также выведен на переднюю панель осциллографа (на структурной схеме он не указан). Генератор разверток может работать в двух режимах: в автоматическом - генерирует пилообразное напряжение заданной длительности и в ждущем режиме - “ожидает” прихода входного сигнала, и с его появлением запускается. Этот режим бывает необходим при исследовании сигналов появляющихся случайно, либо при исследовании параметров импульса, когда его передний фронт должен быть в начале развертки. В автоматическом режиме работы случайный сигнал может появиться в любом месте развертки, что усложняет его наблюдение. Ждущий режим целесообразно применять во время импульсных измерений.

Синхронизация

Если между генератором развертки и сигналом нет никакой связи, то начинаться развертка и появляться сигнал будут в разное время, изображение сигнала на экране осциллографа будет перемещаться либо в одну, либо в другую сторону - в зависимости от разности частот сигнала и развертки. Чтобы остановить изображение нужно “засинхронизировать” генератор, т.е. обеспечить такой режим работы, при котором начало развертки, будет совпадать с началом появления периодического сигнала на входе Y (скажем синусоидального). Причем синхронизировать генератор можно как от внутреннего сигнала (он берется с усилителя вертикального отклонения), так и от внешнего, подаваемого на гнезда “ВXОД СИНXР.”. Выбирают тот или иной режим переключателем S2 - ВНУТР.- ВНЕШН. синхронизация (на структурной схеме переключатель находится в положении “внутренняя синхронизация).

Принцип синхронизации поясняет следующая диаграмма.

Для наблюдения высокочастотных сигналов, когда их частота во много раз превышает принципиально возможную частоту каналов усиления осциллографа, применяют стробоскопические осциллографы.

Принцип работы стробоскопического осциллографа поясняет следующая диаграмма.


Осциллограф работает следующим образом: Каждый период исследуемого напряжения u(t) формируется синхронизирующий импульс Uc, который запускает генератор развертки. Генератор развертки формирует напряжение пилообразной формы, которое сравнивается со ступенчато - нарастающим (на U) напряжением (см. диаграмму). В момент равенства напряжений формируется строб – импульс, причем каждый последующий период строб – импульса увеличивается по отношению к предыдущему на величину t. В момент прихода строб – импульса формируется импульс выборки. Его амплитуда равна амплитуде исследуемого сигнала и выводится на экран осциллографа. Таким образом, на экране получается изображение в виде импульсов, амплитудная огибающая которых, соответствует исследуемому сигналу только “растянутому” во времени. Стробоскопические осциллографы применяются в телевизионной, радиолокационной и других видах высокочастотной техники.

Погрешности осциллографов .

У осциллографов, при измерении напряжений, выделяют следующие погрешности:

Применение осциллографов.

1. Измерение амплитуды исследуемого сигнала.

Измерение амплитуды исследуемого сигнала может быть произведено следующими методами:

Измерение амплитуды методом калиброванной шкалы . Метод основан на измерении линейных размеров изображения непосредственно по шкале экрана ЭЛТ. Измеряемая амплитуда U m определяется как U m = K oh . К о - коэффициент отклонения по вертикали.

Измерение амплитуды методом замещения . Метод основан на замещении измеряемой части сигнала калиброванным напряжением. (Метод рекомендуется применять при измерении малых напряжений).

Измерение амплитуды методом противопоставления . Метод заключается в том, что в дифференциальном усилителе входного канала Y исследуемый сигнал компенсируется калиброванным. Метод обеспечивает высокую точность при измерении малых сигналов.

2. Измерение временных интервалов.

Измерение временных интервалов методом калиброванной шкалы . Метод основан на измерении линейных размеров периода изображения по оси Х непосредственно по шкале экрана ЭЛТ. Измеряемое время t x определяется как t x =K pl M p . К p - коэффициент развертки, М р - мсштаб развертки по оси Х, l- длина периода изображения на экране ЭЛТ.

Измерение временных интервалов с помощью калибрационных меток . Метод основан на создании в кривой исследуемого сигнала яркостных меток образцовой частоты. Это достигается подачей на модулятор ЭЛТ (вход Z) сигнала с измерительного генератора.

Измерение временных интервалов с помощью задержанной развертки. Метод основан на смещении изображения вдоль линии развертки относительно выбранной неподвижной точки (линии шкалы). Отсчет производится по регулировочной шкале “задержка”.

16 Цифровые осциллографы. Структура и принцип работы. Отображение сигнала на экране осциллографа.

Одним из направлений развития современного приборостроения является создание технических средств на основе объединения достижений современной микроэлектроники и информационных технологий. Особенное развитие получило создание интеллектуальных (программируемых) средств измерений на основе современных аппаратно-программные средств.

Указанные средства обладают следующими преимуществами:

    возможность обработки результатов измерений;

    отображение результатов измерения с использованием возможностей современных графических редакторов;

    повышение точности и быстродействия.

В качестве примера рассмотрим цифровые осциллографы (ЦО) – представляющие собой аппаратно-программные средства с очень высокими техническими характеристиками.

По возможностям обработки сигналов и быстродействию ЦО приближаются к специализированным сигнальным процессорам, а по возможностям отображения результатов обработки превосходят их.

Внешний вид осциллографа компании Good Will Instrument Co. Ltd. (GW Instek) серии GDS с цветным ЖК индикатором представлены ниже

1 Структура и принцип действия цифрового осциллографа

На рис. 1 в предельно упрощенном виде показана структурная схема цифрового осциллографа (ЦО).

Рис. 1. Упрощенная структурная схема цифрового осциллографа (ЦО)

МУ – масштабирующее устройство (усилитель и делитель напряжения); АЦП – аналого-цифровой преобразователь; ОЗУ – оперативное запоминающее устройство; МК – микроконтроллер;

ЗУ – запоминающее устройство; Э – экран; ОУ – органы управления (кнопки, ручки).

Пройдя через МУ, входное напряжение u(t) преобразуется АЦП в дискретную последовательность кодовых словN i , отображающих мгновенные значенияu i этого напряжения. Каждое новое кодовое слово записывается в ОЗУ. При этом все предыдущие записанные отсчёты сдвигаются на одну ячейку (регистр сдвига), а самый первыйN 1 исчезает, как бы «выталкивается». Если ОЗУ состоит из М ячеек, то в нём, постоянно обновляясь, содержится М последних, «свежих», кодовых слов. Так продолжается до тех пор, пока не будет выполнено некое заданное условие, например, когда какое-либоu i впервые превысит заданный оператором уровень («запуск по уровню»). После этого содержимое некоторого количества ячеек ОЗУ переписывается в запоминающее устройство ЗУ, входящее в состав микроконтроллера МК.

Каждой ячейке ЗУ соответствует точка на экране по цвету отличающаяся от фона. Её абсциссу определяет номер ячейки, а ординату кодовое слово N i , находящееся в этой ячейке.

Для хорошего изображения сигнала на экране вполне достаточно 2 точки на 1 мм. Средних размеров экран имеет высоту 100 мм и ширину 120 мм. Следовательно, на экране должны располагаться 200 × 240 = 48 000 точек или более.

Таким образом, для формирования хорошего изображения АЦП должен иметь не менее 8 двоичных разрядов (256 точек по вертикали) и ЗУ должно содержать 256 ячеек.

Но количество ячеек ОЗУ может быть гораздо больше. Зачем?

ЦО позволяет делать замечательную вещь – запоминать в ОЗУ очень много кодовых слов, а потом «вытягивать» их порциями, соответствующими ширине экрана. В аналоговых осциллографах это, конечно, невозможно. Для обозначения запаса по оси времени («глубина памяти») иногда пользуются такой оценкой длительности сигнала, данные о котором записаны в ОЗУ: «число экранов». Например, «8 экранов» означает, что объём памяти ОЗУ не 256, а 2048 ячеек, в которых записано 2048 кодовых слов N i . КаждоеN i – это 8-разрядный код, т.е. один байт, т.ч. «8 экранов» – это объём памяти в 2 килобайта. Можно вообразить очень широкий экран-ленту – в 8 раз шире натурального, но такой же высоты. На такой ленте было бы записано изображение всего сигнала. Длина этой ленты около одного метра.

Ещё одно принципиальное отличие от аналоговых осциллографов состоит в том, что в ЦО можно видеть предысторию сигнала до появления импульса запуска. Это называют «предзапуском». Кодовые слова переписываются из ОЗУ в ЗУ так, что в момент появления импульса запуска первой ячейкой ЗУ будет та, что даёт точку на вертикальной линии, проходящей через центр экрана, последующие точки располагаются направо от неё, предыдущие – налево. Положение первой ячейки можно смещать влево или вправо от центра и тем самым соответственно уменьшать или увеличивать видимый интервал предыстории.

Частоту дискретизации (частоту «выборок») можно изменять в широких пределах, что соответствует изменению масштаба по горизонтали и аналогично изменению скорости развёртки в аналоговых осциллографах.

Для изменения масштаба по вертикали, как и в аналоговых осциллографах, можно изменять коэффициенты усиления или деления соответственно входного усилителя или делителя напряжения.

В целом ЦО имеет больше сходства с компьютером, чем с аналоговым осциллографом. Он позволяет выполнять различные математические операции: растягивать во времени фрагменты записанного в память сигнала, складывать и вычитать сигналы в разных каналах, определять частотный спектр сигнала путём применения быстрого преобразования Фурье и проч.

2 Отображение сигнала на экране осциллографа

Основным недостатком всех цифровых осциллографов является, то, что они работают не в реальном масштабе времени. Что это означает?

На рис. 2 приведен схематический рисунок отображения сигнала аналоговым осциллографом, цветное поле обозначает область рисунка, отображаемую на экране (кадр). Задержка между кадрами составляет время обратного хода луча и регулируемую временную задержку (именуемую в России "стабильность" за рубежом "HOLD") запуска развертки для получения стабильной синхронизации. Это время достаточно мало по сравнению с временем развертки и поэтому если сигнал от кадра к кадру изменяется, это изменение немедленно отображается на экране, это и есть отображение сигнала в реальном времени. Динамика сигнала как по вертикали, так и по -горизонтали соответствует изменениям входного сигнала.

Цифровой осциллограф использует абсолютно другой принцип работы. Входной сигнал, в размере выбранного кадра, пройдя все входные усилители и аттенюаторы поступает на АЦП, где преобразуется в цифровую форму и поступает во внутреннюю память для дальнейшей обработки (привязки к развертке, выводу на экран, измерение параметров и т.д.), время этой обработки достаточно велико по сравнению с временем кадра, задержка при выводе на экран получается достаточно большая, часть информации об изменении сигнала между кадрами теряется бесследно (см.рис.3). Это и есть отображение входного сигнала в нереальном масштабе времени - главный недостаток всех цифровых осциллографов. Его можно попытаться сгладить, но избежать нельзя!

Итак, первое искажение сигнала возникает при дискретизации входного сигнала в АЦП. Чаще всего в цифровых осциллографах используются 8-и разрядные АЦП - это 256 отсчетов по амплитуде, что вполне достаточно для исследования сигнала.

Но как входной сигнал записывается в АЦП? Тут пути разных производителей расходятся. Самый простой способ - выбрать как можно большую частоту дискретизации (исходя из соображений целесообразности и полосы пропускания) и записать их в память. Такая дискретизация, с жестко установленным временем между точками дискретизации, называется периодической (или регулярной) и используется в осциллографах Tektronix.

При этом способе дискретизации генератор, задающий шаг дискретизации запускается однократно, его сигнал показан в виде импульсной последовательности на рис. 4.

Шаг дискретизации То задается периодом импульсов, показанных на рис. 4, частота дискретизации равна

Недостатком такого способа является то, что информация между точками дискретизации (красные точки наложенные на сигнал) теряется безвозвратно, не смотря на высокую скорость дискретизации (см. рис 4 и 5) и объем внутренней памяти, в которой происходит дальнейшая обработка ограничен (но об этом немного ниже). Достоинством - простота и самое главное возможность исследовать однократные сигналы с той же достоверностью, что и периодические.



Естественно, изменения сигнала между точками дискретизации не отображаются на экране, поэтому отображение сигнала на экране искажается, как показано справа на рис.5, этот "дефект заложен конструктивно".

В некоторых моделях ЦО использует другой способ дискретизации входного сигнала - нерегулярной дискретизации. Например, дискретизация входного сигнала происходит с частотой 100 Мв/c(Меговыборок в секунду), при этом осуществляется несколько циклов развертки (дискретизации)N, сдвинутых относительно друг друга во времени на величину ΔTi(см. рис. 6).Этот способ дискретизации требует большого объема памяти ОЗУ и последующей обработки.

Сдвиги каждого периода развертки выбираются случайно и повторные попадания в ранее выбранные точки исключаются, при этом точки дискретизации на сигнал накладываются в Nраз чаще. Если частота дискретизации в циклеFд, то при нерегулярной дискретизации частота дискретизации равнаNFд, а шаг дискретизации 1/NFд, т.е. вNраз меньше.

За количество N периодов развертки на периодическом сигнале не остается точек, не подвергшихся дискретизации, включая мелкие детали (см. рис.6 и 7). Достоинством такого способа является возможность использовать "длинную" память и большая достоверность воспроизведения периодических сигналов.


Для непериодических (однократных) сигналов указанный способ дискретизации непременим.

Демонстрируя возможность измерения однократных сигналов, обратимся к рис 8. и 9. Для отображения одного периода синусоиды достаточно 20 точек. Рис 8 представляет собой сигнал частотой 30 МГц на однократной развертке при частоте дискретизации 100 Мв/c. При этом на один период синусоиды приходится 3 точки, в результате отчетливо видны существенные искажения сигнала. На рис 9 сигнал частотой 5 МГц, на период приходится 20 точек и существенные искажения, как видно отсутствуют.

Картина для осциллографов Tektronix с частотой дискретизации 1 Гв/c(Гиговыборок/с) совсем иная, за счет высокой частоты дискретизации однократные сигналы передаются практически без искажения, так на рис 10 и 11 изображены сигналы частотой 100 МГц и 70 МГц, соответственно на однократной развертке.

В электронных осциллографах можно на экране наблюдать кривые различных электрических и импульсных процессов, изменяющихся с частотой от нескольких герц до десятков мегагерц.

С помощью электронных осциллографов можно выполнять измерения различных электрических величин, получать семейство характеристик полупроводниковых приборов, определять параметры электронных устройств, а также проводить многие другие исследования.

Электронные осциллографы присоединяют к сети переменного напряжения 127 или 220 В, частотой 50 Гц, а некоторые из них, кроме того, могут получать питание от источника переменного напряжения 115 или 220 В, частотой 400 Гц либо от источника постоянного напряжения 24 В, включаемых нажатием кнопки «СЕТЬ» (рис. 1).

Рис. 1. Передняя панель электронного осциллографа С1-72

Поворотом двух соответствующих ручек, расположенных в нижней левой части передней панели прибора, можно регулированием яркости и фокусировки получить на экране светящееся пятно малых размеров с резко очерченным контуром, которое нельзя долгое время оставлять неподвижным во избежание порчи экрана электронно-лучевой трубки.

Это пятно легко сместить в любое место экрана поворотом ручек, возле которых нанесены двусторонние стрелки. Однако лучше до присоединения осциллографа к источнику питания органы его управления расположить так, чтобы на экране вместо точки сразу получить светящуюся горизонтальную линию развертки, яркость, фокусировку и расположение которой на экране отрегулировать в соответствии с требованиями эксперимента поворотом соответствующих ручек.

Исследуемое напряжение u (t ) подают соединительным кабелем к гнезду «ВХОД Y », что обеспечивает поступление его па входной делитель напряжения, управляемый ручкой «УСИЛИТЕЛЬ Y », а затем к усилителю вертикального отклонения луча. Если до этого на экране светилась неподвижная точка, то теперь на нем появится вертикальная полоса, длина которой прямо пропорциональна амплитуде исследуемого напряжения.

Включение встроенного в осциллограф генератора пилообразного напряжения, присоединенного к электронно-лучевой трубке через усилитель горизонтального отклонения луча с коэффициентом усиления, регулируемым поворотом ручки переключателя, расположенного в верхнем нравом углу передней панели прибора, изменяет длительность развертки и обеспечивает появление на экране изображения кривой u (t ).

В том случае, если до включения осциллографа органы его управления были установлены в положения, обеспечивающие появление горизонтальной линии развертки, подача исследуемого напряжения на «ВХОД Y » сопровождается появлением на экране той же кривой и u (t ). Неподвижность кривой исследуемого напряжения достигается нажатием одной из кнопок блока синхронизации и соответствующим поворотом ручек «СТАБИЛЬНОСТЬ» и «УРОВЕНЬ». Прозрачная шкала, прикрывающая экран электронно-лучевой трубки, облегчает необходимые измерения по вертикали и горизонтали.



Большинство электронных осциллографов позволяет одновременно подавать два исследуемых напряжения соответственно на входы Y и X, если предварительно нажать кнопку «ВХОД X».

При двух синусоидальных напряжениях одинаковых частот и амплитуд, сдвинутых по фазе относительно друг друга на а, на экране появляются фигуры Лиссажу (рис. 2 ), форма которых зависит от сдвига фаз α = arcsin B/A ,

где В - ордината точки пересечения фигуры Лиссажу с вертикальной осью; А - ордината верхней точки фигуры Лиссажу.

Рис. 2. Фигуры Лиссажу при двух синусоидальных напряжениях одинаковых частот и равных амплитуд, сдвинутых по фазе на α .

Наличие одного луча в электроннолучевой трубке является существенным недостатком осциллографа, исключающим одновременное наблюдение нескольких процессов на экране, что устранимо применением электронного коммутатора.

В двухканальных электронных коммутаторах имеются два входа с одним общим зажимом и один выход, присоединяемый К входу У электронного осциллографа. При работе коммутатора его входы поочередно автоматически подключаются к входу У, в результате чего на экране осциллографа одновременно наблюдают обе кривые напряжений, подведенных ко входам коммутатора. В зависимости от частоты переключения входов изображение кривых на экране получается в виде пунктирных или сплошных линий. Для получения желаемых масштабов кривых на входах коммутаторов установлены делители напряжения.

В четырехканальных электронных коммутаторах имеются четыре двухзажимных входа с делителями напряжения и один выход, подключаемый к входу Y электронного осциллографа, что позволяет одновременно видеть па экране четыре кривые. Обычно электронные коммутаторы имеют ручки для смещения кривых на экране осциллографа вверх и вниз, что позволяет располагать их в соответствии с требованиями эксперимента.

Одновременное наблюдение нескольких кривых возможно также в многолучевых осциллографах, у которых электронно-лучевая трубка имеет несколько систем электродов, создающих лучи и управляющих ими.

Электронные осциллографы позволяют не только наблюдать на экране различные установившиеся периодические процессы, но и фотографировать осциллограммы различных быстропротекающих процессов.

В настоящее время на смену аналоговым осциллографам приходят цифровые запоминающие осциллографы , которые обладают более серьезными функциональными и метрологическими возможностями.

Цифровые запоминающие осциллографы подключаются к персональному компьютеру или ноутбуку через параллельный порт LPT или USB -порт и используют возможности компьютера для отображения электрических сигналов. У большинства моделей дополнительного питания не требуется.

Все стандартные функции осциллографа реализуются с помощью специальных программ, запускающихся на компьютере, т.е. дисплей компьютера используется как экран осциллографа. Такие осциллографы отличаются очень высокой чувствительностью и полосой пропускания.

Рис. 3. Запоминающий цифровой осциллограф ZET 302

Рис. 4. Программа для работы с цифровым осциллографом

Запоминающие цифровой осциллограф фактически является специальной приставкой компьютеру, занимает намного меньше рабочего пространства по сравнению с аналоговыми моделями, так как функции обработки сигналов и их отображения переложены на обычный компьютер. Производительность цифрового запоминающего осциллографа ограничена только производительностью компьютера.

Общее управление последовательностью работы узлов цифрового осциллографа осуществляется микропроцессором. Функциональная схема цифрового осциллографа содержит ряд узлов характерных для компьютера. Это, прежде всего, микропроцессор, цифровые схемы управления и память.

Программное обеспечение цифрового осциллографа может выполнять множество функций, не свойственных светолучевому осциллографу, например, усреднение сигнала с целью его очистки от шумов, быстрое преобразование Фурье для получения спектрограмм сигнала и т. д.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png