Рис. 4. Влияние вращения земли и скорости полёта на видимое положение ротора гироскопа: а – ось ротора гироскопа в начальный момент установлена вертикально на экваторе; б – ось гироскопа в начальный момент установлена на широте; в – ось ротора гироскопа в начальный момент установлена горизонтально на полюсе Земли

Из рис. 3, б видно, что только го­ризонтальная составляющая вращения Земли вызывает кажущийся уход оси ротора гироскопа от направления истинной вертикали.

В общем случае ось ротора гироскопа непрерывно изменяет своё положение относительно связанных с Землёй координат. Поэтому при использовании свободного гироскопа для определения угловых положений и курса самолёта необходимо осуществлять непрерывную коррекцию, компенсирующую уход оси ротора гироскопа.

В качестве измерительного устройства, корректирующего кажущийся уход гировертикали, применяется жидкостный маятник.

При отсутствии ускорений с помощью маятника главная ось гироскопа выставляется вертикально. В те моменты, когда на маятник действуют ускорения, его отключают и гироскоп работает в режиме «памяти».

Устройство, с помощью которого маятник действует на гироскоп, называется системой маятниковой коррекции. Гироскоп с такой коррекцией называют гировертикалью.

В авиагоризонтах используется электролитический маятник (рис. 5), представляющий собой плоскую медную чашу 3, заполненную токопроводящей жидкостью 1 с большим удельным электрическим сопротивлением. Жидкости в чаше столько, что остается место для воздушного пузырька 2. Чаша закрыта крышкой из изоляционного материала, в которую вмонтировано четыре контакта 4, 5, 6, 7, пятым контактом является сама чаша.


Рис. 5. Электролитический маятник: 1-токопроводящая жидкость (электролит);

2- воздушный пузырек; 3-медная чаша; 4,5,6,7-контакты; 8 – изоляционная крышка

При отклонении оси ротора от вертикали пузырек воздуха перемещается (например, на угол γ) и электрические сопротивления между корпусом сосуда и противоположными электродами станут различными. Это вызовет появление коррекционного момента, под действием которого гироскоп прецессирует к вертикали.

Связав маятник с внутренней рамой карданова подвеса, и расположив по осям подвеса коррекционные двигатели, получаем гировертикаль с электромеханической маятниковой коррекцией (рис. 7).



Рис. 7. Гировертикаль с маятниковой коррекцией: 1-электролитический маятник;

2, 3-коррекционные двигатели

Чтобы не допустить погрешности в указании вертикали при полете с ускорением, предусмотрены выключатели цепей коррекции:

поперечной коррекции - при развороте самолета, цепи обмоток управления электродвигателей разрываются контактами выключателя коррекции при определенной величине угловой скорости разворота,

продольной коррекции - при линейных ускорениях летательного аппарата.

Арретирование гироскопов

При транспортировке неработающего гироскопического прибора на его детали будут непрерывно действовать значительные динамические усилия, для их уменьшения применяют приспособление, называемое арретиром или защелкой, с помощью которого у гироскопа в нужный момент уничтожаются две степени свободы.

Вывод: таким образом, электролитический (индукционный) маятник 1, действуя на гироскоп через коррекционные двигатели 2 и 3, все время будет приводить главную ось гироскопа к положению вертикали. При отключении коррекции гироскоп будет сохранять свое прежнее положение в пространстве с точностью, определяемой его собственными ошибками, например, за счет прецессии, вызванной моментами трения по осям карданова подвеса.

Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью вращения (несколько тысяч оборотов в минуту). Основным физическим свойством любого гироскопа является то, что он стремится сохранять направление оси своего вращения в пространстве. Это является следствием общего свойства инертности материи – ведь каждая точка вращающегося тела стремится сохранять скорость и направление своего движения.

Идея устройства гироскопических компасов проста. Если на борту, несмотря на развороты ВС, все время сохраняется некоторое постоянное направление (направление оси вращения гироскопа), то его можно принять за направление начала отсчета и отсчитывать от него угол до направления продольной оси ВС, то есть курс, и другие пилотажные элементы.

Разумеется, если ось гироскопа жестко закрепить на самолете, то она просто вынуждена будет поворачиваться вместе с ним и тогда никакое направление начала отсчета не сохранится. Поэтому гироскоп помещают в специальное устройство – карданов подвес , который обеспечивает гироскопу три степени свободы, то есть дает ему возможность свободно вращаться вокруг трех перпендикулярных осей. Карданов подвес (назван в честь Д. Кардана, который впервые описал его в своей книге) представляет собой две рамки, одна внутри другой, соединенные между собой в противоположных точках. Если внутри рамок поместить какое-нибудь тело, то оно будет сохранять свое положение, как бы рамки ни вращались вокруг него.

Поскольку курс измеряется в горизонтальной плоскости, ось курсового гироскопа , то есть гироскопа, предназначенного для измерения курса, должна располагаться горизонтально . Если эту ось направить по какому-либо выбранному направлению, например, по северному направлению меридиана данной точки, то она будет сохранять это направление, как бы ни вращалось ВС вместе с кардановым подвесом «вокруг» гироскопа. Остается только каким-либо образом измерить и передать на указатель компаса угол между осью гироскопа и продольной осью самолета и тогда можно отсчитывать курс относительно выбранного направления начала отсчета (в данном случае – от северного направления меридиана).

Выставка ГПК . Как следует из устройства гирополукомпаса, он сам не измеряет курс, то есть не может определить, где север и юг, куда направлена ось самолета относительно сторон света. Этим он отличается от магнитного компаса, чувствительный элемент которого сам определяет направление магнитного меридиана в данной точке. Все что делает ГПК – показывает направление продольной оси ВС относительно оси гироскопа , которая хотя и сохраняет свое направление, но в принципе может быть направлена куда угодно. Поэтому данный прибор и называется полукомпасом . Ведь полноценный компас – это прибор для измерения курса.

Только что включенный ГПК может показать совершенно любое значение гироскопического курса, поскольку ось гироскопа может оказаться в любом положении. Для отсчета курса с помощью гирополукомпаса необходимо сначала установить ось гироскопа с помощью задатчика курса по выбранному направлению начала отсчета.

С помощью задатчика курса необходимо установить такое значение курса, которое соответствует фактическому направлению продольной оси ВС относительно выбранного направления начала отсчета .

Рис. 5.21. Выставка оси курсового гироскопа по направлению начала отсчета

На рисунке (рис. 5.21, а) ось гироскопа стоит в направлении, не совпадающем с желаемым направлением начала отсчета С 0 и гироскопический курс γ г вовсе не совпадает с фактическим курсом γ о относительно направления начала отсчета (оно обозначено С 0).

Но если ось гироскорпа направить в направлении начала отсчета (рис. 5.20, б), то показания компаса будут соответствовать γ о. Следовательно, для того, чтобы с помощью использовать ГПК для определения курса, необходимо:

Выбрать направление начала отсчета курса;

Каким-либо образом определить, каков на самом деле курс самолета (направление его продольной оси) относительно этого направления;

Установить это значение на шкале гирополукомпаса с помощью задатчика курса.

Эта операция называется выставкой ГПК. Она аналогична установке правильного времени на часах, для которой, конечно, необходимо сначала узнать правильное время.

Курс ВС относительно выбранного меридиана можно узнать с помощью другого компаса, например, магнитного, который всегда имеется на самолете. Магнитный компас измеряет курс относительно магнитного меридиана места самолета, поэтому при установке на шкале ГПК значения магнитного курса ось гироскопа и окажется ориентированной по направлению магнитного меридиана в той точке, где эта операция была проделана.

Заметим, что это вовсе не означает, что ГПК будет теперь измерять магнитный курс. Это только в данном месте гироскопический курс совпадет с магнитным. Если же самолет переместится в другое место, то ось гироскопа сохранит прежнее положение, а направление магнитного меридиана в новой точке может быть уже другим из-за схождения меридианов и из-за изменения магнитного склонения.

Другой способ выставки ГПК не требует даже магнитного компаса. Перед взлетом, когда самолет находится на исполнительном старте на взлетно-посадочной полосе (ВПП), его продольная ось с высокой точностью соответствует направлению ВПП, которое, конечно, точно известно на каждом аэродроме. При выставке на шкале ГПК этого направления (магнитного курса взлета) ось гироскопа и будет направлена по северному направлению магнитного меридиана аэродрома вылета.

На практике выставка гирополукомпаса осуществляется по магнитному компасу на стоянке аэродрома перед выруливанием, а на исполнительном старте на ВПП установленный курс при необходимости корректируется задатчиком курса.

Ось гироскопа может быть выставлена по любому направлению, а не обязательно по направлению магнитного меридиана. В любом случае необходимо определить и выставить задатчиком курса фактический курс ВС относительно выбранного меридиана. Например, если за направление начала отсчета выбрано направление истинного меридиана аэродрома вылета, то нужно определить и выставить фактический истинный курс. Его можно определить прибавлением к магнитному курсу магнитного склонения.

Горизонтальная коррекция . При начальной выставке ось курсового гироскопа, конечно, располагается в горизонтальной плоскости. Ведь курс – это угол именно в горизонтальной плоскости, да и направление начала отсчета (меридиана) тоже является горизонтальным. Но что такое горизонтальная плоскость? Если принять Землю за сферу, то это плоскость, касательная к ней в данной точке, то есть перпендикулярная к радиусу Земли. А при вращении Земли эта плоскость меняет свое положение в мировом пространстве относительно звезд. Гироскоп же сохраняет свое направление и, следовательно, со временем выходит из этой горизонтальной плоскости (на самом деле это горизонтальная плоскость отклоняется от оси гироскопа).

Чтобы ось гироскопа (направление начала отсчета курса) оставалась горизонтальной в ГПК-52 и в более современных приборах предусмотрена горизонтальная коррекция . Ее механизм постоянно удерживает ось курсового гироскопа в горизонтальном положении.

В простейшем случае механизм горизонтальной коррекции представляет собой так называемый жидкостной переключатель , который выполняет функцию маятника. Это небольшая емкость с токопроводящей жидкостью, закрепленная на нижней части гироузла. В жидкости имеется пузырек воздуха, а по краям емкости – электрические контакты. Если гироузел с жидкостным маятником и, следовательно, ось гироскопа расположены горизонтально, то пузырек плавает в центре емкости. Если маятник вышел из плоскости горизонта, то пузырек примыкает к краю емкости, касаясь какой-либо пары контактов. Поскольку воздух в пузырьке ток не пропускает, изменяются электрические токи в цепях маятника и разность токов, протекающих через разные пары контактов, заставляет работать специальный электрический двигатель. Этот двигатель разворачивает внутреннюю рамку карданова подвеса и приводит гироузел вместе с осью гироскопа и жидкостным маятником в горизонтальное положение. Пузырек перестает замыкать контакты и двигатель выключается.

Механизм горизонтальной коррекции работает автоматически и не требует от экипажа каких-либо действий. При дальнейшем рассмотрении работы гироскопических приборов будем считать, что благодаря этому механизму ось курсового гироскопа все время находится в горизонтальном положении.

Азимутальная коррекция. За счет вращения Земли ось курсового гироскопа имеет уход и в азимуте, то есть поворачивается и вокруг вертикальной оси, отклоняясь от направления меридиана начальной выставки. Поскольку Земля вращается с запада на восток, нетрудно сообразить, что в северном полушарии Земли ось гироскопа «уходит» к востоку, то есть вращается по часовой стрелке, если смотреть сверху. Скорость этого ухода, то есть поворота оси гироскопа, зависит от широты места расположения гироскопа. На рис. 5.23 изображен гироскоп, а ось Y - направление местной вертикали в точке его расположения.

Вектор угловой скорости вращения Земли ω з направлен по оси вращения планеты, причем, в соответствии с правилом буравчика, в сторону северного полюса. Проекцию этого вектора на направление местной вертикали (ось Y) обозначим ω з. y .Из рис. 5.23 видно, что

ω з. y = ω з sin φ,

где φ - широта точки;

ω з - угловая скорость вращения Земли. Поскольку Земля совершает оборот на 360° за 24 часа, то ω з =15 °/ч.

Рис. 5.23. Азимутальный уход курсового гироскопа

Вектор ω з. y характеризует скорость вращения Земли вокруг вертикальной оси в точке относительно звезд и, следовательно, относительно сохраняющего свое направление гироскопа. Очевидно, что такой же по величине, но противоположной по направлению, будет скорость поворота оси гироскопа относительно Земли, если теперь Землю считать неподвижной.

Таким образом, скорость азимутального ухода гироскопа за счет суточного вращения Земли зависит от широты места самолета . На экваторе (φ =0) гироскоп от начального направления (например, направления истинного меридиана) не уходит. На полюсе (φ =90°) скорость ухода максимальна (15°/ч). На промежуточных широтах скорость ухода пропорциональна синусу широты. Например, на широте 30° она составляет 7,5°/ч (sin30° =0,5; 0,5х15=7,5).

В южном полушарии Земли широта отрицательна, поэтому противоположен и знак (сторона) ухода.

Таким образом, если даже на неподвижном самолете установить ось гироскопа, например, по истинному меридиану и не предпринять никаких мер, то с течением времени ось гироскопа будет уходить от меридиана. На компасе при этом будет меняться гироскопический курс, несмотря на то, что самолет неподвижен.

Для компенсации ухода гироскопа в азимуте ГПК снабжен механизмом азимутальной коррекции . Он представляет собой небольшой электромотор, скорость вращения которого можно регулировать. На пульте управления ГПК имеется кремальера установки широты пролетаемой местности, которая и регулирует скорость электромотора. Если установить с ее помощью некоторую широту φ уст , то двигатель будет поворачивать ось гироскопа с угловой скоростью прецессии (ухода)

ω пр = ω з sin φ уст,

но в сторону, противоположную той, в которую уходит гироскоп из-за вращения Земли.

Очевидно, что если установить φ уст равную фактической широте места самолета, то ось гироскопа будет сохранять свое первоначальное положение. Ведь с какой скоростью она «хочет» уйти за счет вращения Земли, с такой же скоростью, но в обратном направлении, ее будет поворачивать двигатель механизма азимутальной коррекции.

Механизм азимутальной коррекции на практике часто называют «широтным потенциометром», поскольку в первых типах гироскопических приборов (в том числе, ГПК-52) действительно использовался потенциометр для изменения скорости вращения электромотора.

Из изложенного следует, что для сохранения осью курсового гироскопа направления начала отсчета в полете необходимо устанавливать широту пролетаемой местности (на практике – при ее изменении на 1-2°). Если этого не делать или устанавливать широту неточно, ось гироскопа будет уходить со скоростью, соответствующей разности фактической и установленной широт, и, следовательно, будет возрастать погрешность измерения курса.

Конец работы -

Эта тема принадлежит разделу:

Системы координат, применяемые в навигации сферическая, полярная, ортодромическая

Рис Полярная система координат.. Дальность расстояние от начала системы координат до объекта точки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы координат, применяемые в навигации (сферическая, полярная, ортодромическая)
Если очень высокая точность решения навигационных задач не требуется, то Землю можно рассматривать как сферу. В этом случае используется нормальная сферическая система координат, полюсы кото

Навигационные и пилотажные элементы
Пилотажные элементы. Навигация и пилотирование являются процессами управления движением ВС. Чтобы описывать это движение, используются величины, называемые навигационными и пилотаж

Ветер и его характеристики. Эквивалентный ветер
Воздушные массы атмосферы практически всегда находятся в движении, которое вызвано различием температуры и давления в различных районах земной поверхности. Причины и характер такого движения изучае

Навигационный треугольник скоростей. Зависимость путевой скорости и угла сноса от угла ветра
ВС движется относительно воздушной массы с истинной воздушной скоростью V, воздушная масса относительно земли со скоростью U,и скорость перемещения ВС относительно

Принципы измерения курса и виды курсовых приборов
Курс характеризует направление продольной оси ВС в горизонтальной плоскости, то есть показывает, куда направлен «нос» самолета. Он имеет большое значение для навигации, поскольку одновременно являе

Девиация, её виды, учёт в полёте
Очевидно, что в одной и той же точке пространства не могут одновременно существовать два магнитных поля, два вектора напряженности – Земли (H) и самолета (F). Эти

Практические рекомендации по применению магнитных компасов
1. Следует помнить, что в полярных районах, где велико магнитное наклонение и, следовательно, мала горизонтальная составляющая магнитного поля Земли, магнитные компасы работают неустойчиво и могут

Гирополукомпас ГПК-52. Ортодромичность гирополукомпаса
Гирополукомпас ГПК-52. Принцип работы гироскопических курсовых приборов рассмотрим на примере одного из простейших устройств такого рода− гирополукомпаса ГПК-52.

Ортодромичность курсового гироскопа
Теперь после анализа поведения курсового гироскопа на неподвижном самолете рассмотрим, как он будет вести себя в случае, когда ВС перемещается по ортодромической линии пути. Общий случай – п

Опорный меридиан и ортодромический курс. Преобразование курсов
Ось гироскопа в начале полета может быть выставлена по абсолютно любому направлению. Пилоты привыкли, что курс 0° – это на север, 90° – на восток и т.д. Поэтому, чтобы численные значения гир

Основные сведения о курсовых системах. Режим магнитной коррекции
Каждый из двух рассмотренных принципов измерения курса – магнитный и гироскопический – имеет свои достоинства и недостатки. Магнитный компас обладает тем достоинством, что позволяет именно

Режим магнитной коррекции
Как уже отмечалось, в режиме «ГПК» курсовая система работает аналогично обычному гирополукомпасу, поэтому этот режим не требует дополнительного отдельного рассмотрения. Рассмотрим работу к

Понятие о радиовысотомерах
Радиовысотомер (РВ) является автономным радиотехническим устройством. Это означает, что для его работы используются радиоволны и не требуется какого-либо оборудования на земле. Разл

Принцип работы, устройство и погрешности барометрического высотомера
По принципу своего устройства барометрический высотомер по сути представляет собой барометр-анероид с тем лишь отличием, что его шкала отградуирована не в единицах давления, а в единицах выс

Погрешности барометрического высотомера
Барометрический высотомер имеет ряд погрешностей, различающихся по вызывающим их причинам. Погрешности, вызванные разными факторами, складываются, образуя одну общую погрешность – разность между пр

Уровни начала отсчета барометрической высоты
В принципе, путем установки давления на шкале барометрического высотомера пилот может сам выбрать уровень, от которого он желает отсчитывать высоту. Но с точки зрения безопасности полетов необходим

Правила установки давления на шкале барометрического высотомера
Рассмотрим порядок установки давления при полете по ППП. Традиционная технология, принятая в нашей стране, предусматривает, что перед вылетом все члены экипажа на своих высотомерах

Однострелочные указатели скорости
В уравнение Бернулли входят плотности воздуха ρ в обоих сечения струйки. Для небольших скоростей (до 400-450 км/ч) и высот полета (до 4000-5000 м) воздух можно считать несжимаемым

Комбинированные указатели скорости
На больших скоростях и высотах разность истинной и приборной скоростей становится уже значительной. Кроме того, на больших скоростях и высотах начинает заметно сказываться сжимаемость воздуха. Поэт

Погрешности указателей скорости
Инструментальные погрешности ΔVи возникают из-за несовершенства конструкции прибора и неточности его регулировки. Каждый экземпляр прибора имеет свои значения инструментальны

Понятие о счислении
При выполнении любого полета члены летного экипажа должны в любой момент времени знать текущее местонахождение ВС. Определение места самолета – одна из основных задач аэронавигации. В аэронавигации

Графическое счисление пути
Полная прокладка. Целью полной прокладки является определение текущего МС и поэтому она, конечно, выполняется во время полета. Не следует думать, что в каждом полете пилот или штурман выполн

Принцип автоматизированного счисления частноортодромических координат
Счисление – это расчет текущих координат, поэтому основной частью любой автоматизированной системы счисления пути является навигационный вычислитель. Он может быть аналоговым, то есть основа

ДИСС. Курсодоплеровское и курсовоздушное счисление
Доплеровский измеритель скорости и сноса (ДИСС) – бортовое радиотехническое устройство, позволяющее измерять на борту ВС его путевую скорость и угол сноса. ДИСС основан на использов

Основные правила аэронавигации. Контроль пути и его виды
На протяжении всего полета экипаж обязан выполнять следующие основные правила аэронавигации. 1) Контроль выдерживания заданной траектории полета с периодичностью, необходимой для обеспечен

Визуальная ориентировка
Визуальная ориентировка – способ определения МС, основанный на сличении карты с пролетаемой местностью. Для визуальной ориентировки используются ориентиры. Навигационный ориентир

Обобщённый метод линий положения. Навигационный параметр, поверхность и линия положения
Навигационный параметр. Место самолета можно определить с помощью различных технических, в том числе радионавигационных средств и разными методами. Но как показал профессор В.В

Поверхность и линия положения
Если в какой-то точке пространства навигационный параметр имеет какое-то определенное значение, то это не вовсе не значит, что в других точках его значения должны быть обязательно другие. Наверняка

Виды линий положения
В навигации чаще всего используются навигационные параметры, которые являются геометрическими величинами, то есть расстояниями, углами и пр. В этом случае каждому виду навигационного параметра соот

Виды погрешностей. Средняя квадратическая погрешность
Виды погрешностей. Практически всегда погрешность включает в себя две составляющие ее части: систематическую и случайную. Δa= Δaсист + Δaслуч.

Навигационная характеристика радиокомпасной системы
Радиокомпасная система включает в себя наземную радиостанцию и бортовой пеленгатор, называемый автоматическим радиокомпасом (АРК). В качестве радиостанций могут использоваться специально установлен

Принцип работы АРК и порядок его настройки
Принцип работы радиокомпаса основан на направленном приеме радиоволн. АРК включает в себя следующие основные составные части: – поворотную рамочную антенну; – ненаправленную (шлей

Способы полёта на РНТ (пассивный, курсовой, активный)
Способы полета на или от радиостанции. Как показано ранее, КУР не является навигационным параметром, поскольку в одной и той же точке пространства может иметь любое значение в

Контроль пути по направлению с помощью АРК при полёте на и от РНТ
Условие контроля пути по направлению. Существует общий термин «радионавигационная точка» (РНТ), которым можно обозначать любое наземное радионавигационное средство: ОП

Контроль пути по дальности с помощью АРК
Контроль пути по дальности – это определение пройденного или оставшегося расстояния до ППМ. Для его выполнения также можно использовать АРК и ОПРС. Но для этого ОПРС, конечно, должна находиться не

Расчёт ИПС и определение МС по двум радиостанциям
Для решения некоторых навигационных задач, например, для определения МС, необходимо проложить на карте ЛРПС. Для этого необходимо сначала определить пеленг самолета. Поскольку на любой карте нанесе

Определение места самолета по двум радиостанциям
Определение места самолета – это полный контроль пути, поскольку если известно место самолета, то можно определить и уклонение от ЛЗП (контроль пути по направлению), и пройденное или оставшееся рас

Исправление пути с выходом в ППМ и с углом выхода
Исправление пути с выходом в ППМ. Исправление пути это действия по выводу ВС на заданную траекторию после того, как отклонение от нее обнаружено. Один из способов испр

Исправление пути с углом выхода
Ранее в главе 1 уже был рассмотрен один из способов исправления пути – с выходом в ППМ. Но такой способ в гражданской авиации применим главным образом при небольших линейных уклонениях, например, н

Указатели типа РМИ и УГР. Полёт по ЛЗП с их использованием
Наиболее распространены так называемые радиомагнитные индикаторы (РМИ). По-английски они называются точно так же – Radio Magnetic Indicator (RMI). В некоторых типах отечественных навигационных комп

Полет в створе радиостанций
Если полет должен выполняться по ЛЗП, на которой установлены две радиостанции, то говорят о полете в створе радиостанций. Если ВС летит между РНТ (одна впереди, а другая сзади), то створ называется

Минимальная и максимальность действия РНС
Минимальная дальность действия. В вертикальной плоскость диаграмма направленности большинства наземных радионавигационных средств (радиостанций, радиомаяков) выглядит примерно

Навигационная характеристика радиопеленгаторной системы
Характеристика радиопеленгаторной системы. Радиопеленгаторная система является в первую очередь средством управления воздушным движением (УВД). С ее помощью диспетчер УВД на зе

Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудо

Определение места самолета по одной радиостанции
В соответствии с обобщенным методом линий положения для определения МС необходимо два навигационных параметра и две соответствующие им линии положения. Казалось бы, что если радиостанция только одн

Принцип действия дальномерных систем. Наклонная и горизонтальная дальности
Характеристика DME. Дальномерная радионавигационная система (ДРНС) включает в себя наземное оборудование (дальномерный радиомаяк) и бортовое оборудование (самолетный дальномер)

Угломерно-дальномерные системы. Навигационная характеристика РСБН
Угломерно-дальномерными радионавигационными системами (УДРНС) называют такие системы, которые позволяют одновременно измерить два навигационных параметра – пеленг и дальность. С помощью УДРНС можно

Навигационная характеристика наземных РЛС и их применение для контроля и исправления пути
Понятие о радиолокации. Под радиолокацией (от «радио» и location (лат.) – определять местоположение) в широком смысле слова понимают способы определения местоположения и характ

Понятие о зональной навигации
Навигационное наведение. Невозможно понять, что такое зональная навигация, да и современная навигация вообще, если не иметь представления о таком понятии, как навигационное нав

Принцип работы бортовой РЛС. Органы управления БРЛС «Гроза»
Бортовая радиолокационная станция (БРЛС) является автономным радиотехническим средством, позволяющим наблюдать радиолокационное изображение пролетаемой местности и окружающей воздушной обстановки,

Способы определения МС с помощью БРЛС (угломерный, дальномерный, угломерно-дальномерный)
С помощью БРЛС можно определить МС гораздо точнее, чем обзорно-сравнительным способом. Для этого на экране локатора нужно измерить курсовой угол и дальность до ориентира. Курсовой угол ори

Обзорно-сравнительный способ ориентировки по БРЛС и определение с её помощью путевой скорости и угла сноса
Благодаря тому, что на экране БРЛС формируется изображение пролетаемой местности, пилот может вести ориентировку путем сопоставления радиолокационного изображения с полетной картой, наподобие того,

Определение путевой скорости и угла сноса по БРЛС
Определение путевой скорости. Все ориентиры на экране по мере движения ВС перемещаются в сторону, противоположную направлению движения ВС, то есть, на экране примерно вниз. Име

Принцип инерциального счисления пути
Инерциальные навигационные системы (ИНС) основаны на измерении ускорений ВС по осям системы координат. Ускорения измеряются устройствами, называемыми акселерометрами. Принцип действия

Параметры, определяемые с помощь ИНС. Бесплатформенные ИНС
Параметры, определяемые с помощью ИНС.Инерциальные системы предназначены для определения координат места самолета. Но в процессе их определения можно получить значения многих д

Бесплатформенные инерциальные навигационные системы
На протяжении многих десятилетий усилия инженеров, разрабатывавших традиционные ИНС, были направлены на уменьшение собственного ухода гироскопов, удерживающих гироплатформу в заданном положении. Не

Расчёт курса, скорости и времени по известному ветру
Рассмотрим порядок решения задачи на примере со следующими исходными данными: V = 400; ЗМПУ =232; δ =290; U = 70; S = 164; ΔМ= –4.

Определение ветра в полёте
Дано: V=680; W=590; МК=312; УС=+8; ΔМ= –4. Найти: δн, δ, U.

Расчёт истинной скорости по широкой стрелке
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле: Vи = Vпр + ΔVи + ΔVa + ΔVсж + ΔV

Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью вращения (несколько тысяч оборотов в минуту). Основным физическим свойством любого гироскопа является то, что он стремится сохранять направление оси своего вращения в пространстве. Это является следствием общего свойства инертности материи – ведь каждая точка вращающегося тела стремится сохранять скорость и направление своего движения.

Идея устройства гироскопических компасов проста. Если на борту, несмотря на развороты ВС, все время сохраняется некоторое постоянное направление (направление оси вращения гироскопа), то его можно принять за направление начала отсчета и отсчитывать от него угол до направления продольной оси ВС, то есть курс, и другие пилотажные элементы.

Разумеется, если ось гироскопа жестко закрепить на самолете, то она просто вынуждена будет поворачиваться вместе с ним и тогда никакое направление начала отсчета не сохранится. Поэтому гироскоп помещают в специальное устройство – карданов подвес , который обеспечивает гироскопу три степени свободы, то есть дает ему возможность свободно вращаться вокруг трех перпендикулярных осей. Карданов подвес (назван в честь Д. Кардана, который впервые описал его в своей книге) представляет собой две рамки, одна внутри другой, соединенные между собой в противоположных точках. Если внутри рамок поместить какое-нибудь тело, то оно будет сохранять свое положение, как бы рамки ни вращались вокруг него.

Поскольку курс измеряется в горизонтальной плоскости, ось курсового гироскопа , то есть гироскопа, предназначенного для измерения курса, должна располагаться горизонтально . Если эту ось направить по какому-либо выбранному направлению, например, по северному направлению меридиана данной точки, то она будет сохранять это направление, как бы ни вращалось ВС вместе с кардановым подвесом «вокруг» гироскопа. Остается только каким-либо образом измерить и передать на указатель компаса угол между осью гироскопа и продольной осью самолета и тогда можно отсчитывать курс относительно выбранного направления начала отсчета (в данном случае – от северного направления меридиана).

Выставка ГПК . Как следует из устройства гирополукомпаса, он сам не измеряет курс, то есть не может определить, где север и юг, куда направлена ось самолета относительно сторон света. Этим он отличается от магнитного компаса, чувствительный элемент которого сам определяет направление магнитного меридиана в данной точке. Все что делает ГПК – показывает направление продольной оси ВС относительно оси гироскопа , которая хотя и сохраняет свое направление, но в принципе может быть направлена куда угодно. Поэтому данный прибор и называется полукомпасом . Ведь полноценный компас – это прибор для измерения курса.


Только что включенный ГПК может показать совершенно любое значение гироскопического курса, поскольку ось гироскопа может оказаться в любом положении. Для отсчета курса с помощью гирополукомпаса необходимо сначала установить ось гироскопа с помощью задатчика курса по выбранному направлению начала отсчета.

С помощью задатчика курса необходимо установить такое значение курса, которое соответствует фактическому направлению продольной оси ВС относительно выбранного направления начала отсчета .

Рис. 5.21. Выставка оси курсового гироскопа по направлению начала отсчета

На рисунке (рис. 5.21, а) ось гироскопа стоит в направлении, не совпадающем с желаемым направлением начала отсчета С 0 и гироскопический курс γ г вовсе не совпадает с фактическим курсом γ о относительно направления начала отсчета (оно обозначено С 0).

Но если ось гироскорпа направить в направлении начала отсчета (рис. 5.20, б), то показания компаса будут соответствовать γ о. Следовательно, для того, чтобы с помощью использовать ГПК для определения курса, необходимо:

Выбрать направление начала отсчета курса;

Каким-либо образом определить, каков на самом деле курс самолета (направление его продольной оси) относительно этого направления;

Установить это значение на шкале гирополукомпаса с помощью задатчика курса.

Эта операция называется выставкой ГПК. Она аналогична установке правильного времени на часах, для которой, конечно, необходимо сначала узнать правильное время.

Курс ВС относительно выбранного меридиана можно узнать с помощью другого компаса, например, магнитного, который всегда имеется на самолете. Магнитный компас измеряет курс относительно магнитного меридиана места самолета, поэтому при установке на шкале ГПК значения магнитного курса ось гироскопа и окажется ориентированной по направлению магнитного меридиана в той точке, где эта операция была проделана.

Заметим, что это вовсе не означает, что ГПК будет теперь измерять магнитный курс. Это только в данном месте гироскопический курс совпадет с магнитным. Если же самолет переместится в другое место, то ось гироскопа сохранит прежнее положение, а направление магнитного меридиана в новой точке может быть уже другим из-за схождения меридианов и из-за изменения магнитного склонения.

Другой способ выставки ГПК не требует даже магнитного компаса. Перед взлетом, когда самолет находится на исполнительном старте на взлетно-посадочной полосе (ВПП), его продольная ось с высокой точностью соответствует направлению ВПП, которое, конечно, точно известно на каждом аэродроме. При выставке на шкале ГПК этого направления (магнитного курса взлета) ось гироскопа и будет направлена по северному направлению магнитного меридиана аэродрома вылета.

На практике выставка гирополукомпаса осуществляется по магнитному компасу на стоянке аэродрома перед выруливанием, а на исполнительном старте на ВПП установленный курс при необходимости корректируется задатчиком курса.

Ось гироскопа может быть выставлена по любому направлению, а не обязательно по направлению магнитного меридиана. В любом случае необходимо определить и выставить задатчиком курса фактический курс ВС относительно выбранного меридиана. Например, если за направление начала отсчета выбрано направление истинного меридиана аэродрома вылета, то нужно определить и выставить фактический истинный курс. Его можно определить прибавлением к магнитному курсу магнитного склонения.

Горизонтальная коррекция . При начальной выставке ось курсового гироскопа, конечно, располагается в горизонтальной плоскости. Ведь курс – это угол именно в горизонтальной плоскости, да и направление начала отсчета (меридиана) тоже является горизонтальным. Но что такое горизонтальная плоскость? Если принять Землю за сферу, то это плоскость, касательная к ней в данной точке, то есть перпендикулярная к радиусу Земли. А при вращении Земли эта плоскость меняет свое положение в мировом пространстве относительно звезд. Гироскоп же сохраняет свое направление и, следовательно, со временем выходит из этой горизонтальной плоскости (на самом деле это горизонтальная плоскость отклоняется от оси гироскопа).

Чтобы ось гироскопа (направление начала отсчета курса) оставалась горизонтальной в ГПК-52 и в более современных приборах предусмотрена горизонтальная коррекция . Ее механизм постоянно удерживает ось курсового гироскопа в горизонтальном положении.

В простейшем случае механизм горизонтальной коррекции представляет собой так называемый жидкостной переключатель , который выполняет функцию маятника. Это небольшая емкость с токопроводящей жидкостью, закрепленная на нижней части гироузла. В жидкости имеется пузырек воздуха, а по краям емкости – электрические контакты. Если гироузел с жидкостным маятником и, следовательно, ось гироскопа расположены горизонтально, то пузырек плавает в центре емкости. Если маятник вышел из плоскости горизонта, то пузырек примыкает к краю емкости, касаясь какой-либо пары контактов. Поскольку воздух в пузырьке ток не пропускает, изменяются электрические токи в цепях маятника и разность токов, протекающих через разные пары контактов, заставляет работать специальный электрический двигатель. Этот двигатель разворачивает внутреннюю рамку карданова подвеса и приводит гироузел вместе с осью гироскопа и жидкостным маятником в горизонтальное положение. Пузырек перестает замыкать контакты и двигатель выключается.

Механизм горизонтальной коррекции работает автоматически и не требует от экипажа каких-либо действий. При дальнейшем рассмотрении работы гироскопических приборов будем считать, что благодаря этому механизму ось курсового гироскопа все время находится в горизонтальном положении.

Азимутальная коррекция. За счет вращения Земли ось курсового гироскопа имеет уход и в азимуте, то есть поворачивается и вокруг вертикальной оси, отклоняясь от направления меридиана начальной выставки. Поскольку Земля вращается с запада на восток, нетрудно сообразить, что в северном полушарии Земли ось гироскопа «уходит» к востоку, то есть вращается по часовой стрелке, если смотреть сверху. Скорость этого ухода, то есть поворота оси гироскопа, зависит от широты места расположения гироскопа. На рис. 5.23 изображен гироскоп, а ось Y - направление местной вертикали в точке его расположения.

Вектор угловой скорости вращения Земли ω з направлен по оси вращения планеты, причем, в соответствии с правилом буравчика, в сторону северного полюса. Проекцию этого вектора на направление местной вертикали (ось Y) обозначим ω з. y .Из рис. 5.23 видно, что

ω з. y = ω з sin φ,

где φ - широта точки;

ω з - угловая скорость вращения Земли. Поскольку Земля совершает оборот на 360° за 24 часа, то ω з =15 °/ч.

Рис. 5.23. Азимутальный уход курсового гироскопа

Вектор ω з. y характеризует скорость вращения Земли вокруг вертикальной оси в точке относительно звезд и, следовательно, относительно сохраняющего свое направление гироскопа. Очевидно, что такой же по величине, но противоположной по направлению, будет скорость поворота оси гироскопа относительно Земли, если теперь Землю считать неподвижной.

Таким образом, скорость азимутального ухода гироскопа за счет суточного вращения Земли зависит от широты места самолета . На экваторе (φ =0) гироскоп от начального направления (например, направления истинного меридиана) не уходит. На полюсе (φ =90°) скорость ухода максимальна (15°/ч). На промежуточных широтах скорость ухода пропорциональна синусу широты. Например, на широте 30° она составляет 7,5°/ч (sin30° =0,5; 0,5х15=7,5).

В южном полушарии Земли широта отрицательна, поэтому противоположен и знак (сторона) ухода.

Таким образом, если даже на неподвижном самолете установить ось гироскопа, например, по истинному меридиану и не предпринять никаких мер, то с течением времени ось гироскопа будет уходить от меридиана. На компасе при этом будет меняться гироскопический курс, несмотря на то, что самолет неподвижен.

Для компенсации ухода гироскопа в азимуте ГПК снабжен механизмом азимутальной коррекции . Он представляет собой небольшой электромотор, скорость вращения которого можно регулировать. На пульте управления ГПК имеется кремальера установки широты пролетаемой местности, которая и регулирует скорость электромотора. Если установить с ее помощью некоторую широту φ уст , то двигатель будет поворачивать ось гироскопа с угловой скоростью прецессии (ухода)

ω пр = ω з sin φ уст,

но в сторону, противоположную той, в которую уходит гироскоп из-за вращения Земли.

Очевидно, что если установить φ уст равную фактической широте места самолета, то ось гироскопа будет сохранять свое первоначальное положение. Ведь с какой скоростью она «хочет» уйти за счет вращения Земли, с такой же скоростью, но в обратном направлении, ее будет поворачивать двигатель механизма азимутальной коррекции.

Механизм азимутальной коррекции на практике часто называют «широтным потенциометром», поскольку в первых типах гироскопических приборов (в том числе, ГПК-52) действительно использовался потенциометр для изменения скорости вращения электромотора.

Из изложенного следует, что для сохранения осью курсового гироскопа направления начала отсчета в полете необходимо устанавливать широту пролетаемой местности (на практике – при ее изменении на 1-2°). Если этого не делать или устанавливать широту неточно, ось гироскопа будет уходить со скоростью, соответствующей разности фактической и установленной широт, и, следовательно, будет возрастать погрешность измерения курса.

Гироскопические вертикали предназначены для определения направления истинной вертикали на движущихся объектах, т. е. для измерения и задания углов крена и тангажа ЛА, крена и диферента корабля и других объектов, а также для сохранения заданного углового положения прицела относительно плоскости горизонта и т. д.

На неподвижном основании направление истинной вертикали определяют жидкостным уровнем с воздушным пузырьком или любым короткопериодическим физическим маятником.

Короткопериодический маятник, установленный на корабле или ЛА, при изменении скорости или направления движения объекта отклоняется к направлению кажущейся вертикали. Кажущаяся вертикаль совпадает с направлением равнодействующей всех ускорений, действующих в точке подвеса маятника, включая ускорение силы тяжести (считая его направленным вверх). Следовательно, он не пригоден для непосредственного определения и задания направления истинной вертикали. В отличие от маятника свободный гироскоп не подвержен действию ускорений и сохраняет направление оси фигуры в абсолютном пространстве неизменным.

Если ось ротора гироскопа установить по истинной вертикали, то с течением времени она отклонится от этого направления вследствие суточного вращения Земли.

Для придания гироскопу избирательности к истинной вертикали он корректируется с помощью физического маятника. При этом одновременно используется способность физического маятника

различать направление истинной вертикали при установившемся движении корабля или самолета и способность свободного гироскопа сохранять направление оси фигуры неизменным в абсолютном пространстве.

Гироскопический маятник , . Простейшей гировертикалью является гироскопический маятник, представляющий собой гироскоп, центр тяжести которого смещен вдоль оси его ротора и не совпадает с неподвижной точкой О (рис. VIII. 19).

Рис. VIII. 19. Гироскопический маятник: 1 - ротор; 2 - внутренняя рамка; 3 - наружная рамка; 4 - основание

Движение оси ротора гироскопа будем определять в относительной системе координат Эта система таким образом связана с траекторией движения объекта, что ось совпадает с направлением истинной вертикали, ось сферической нормалью к траектории объекта, а ось перпендикулярна первым двум и образует вместе с осями правую систему координат.

Подвижная ось координат направлена по оси ротора гироскопа, ось х - по оси внутренней рамки кардана, а ось у - перпендикулярна им таким образом, чтобы система также была правой.

Положение подвижной системы координат по отношению к трехграннику задается углами причем угловые скорости направлены по осям Полагая углы а и Р малыми и пренебрегая угловой скоростью суточного вращения Земли и моментами трения в осях карданова подвеса, получим приближенные уравнения прецессии гиромаятника, установленного, например, на корабле, движущемся с ускорением по направлению ортодромии, а именно:

где - собственный (или кинетический) момент гироскопа;

Вес гироскопа (рамки кардана считаем невесомыми);

Расстояние от центра тяжести гироскопа до точки пересечения осей карданова подвеса;

Масса гироскопа;

Скорость движения корабля.

Обозначая частоту собственных колебаний гиромаятника через получим

Если принять, что в уравнениях (VIII.86) частота собственных колебаний гиромаятника равна частоте собственных колебаний математического маятника, длина которого равна радиусу Земли, т. е.

то получим

Частное решение уравнений (VIII.88) при любой функции имеет вид

а общее решение

где - случайные начальные отклонения оси ротора гироскопа от истинной вертикали.

Уравнения (VIII.89) и (VIII.90) показывают, что если в начале движения корабля ось ротора гиромаятника совпадала с направлением истинной вертикали, то в процессе движения она отклоняется от истинной вертикали лишь на величину скоростной девцации а в направлении к борту. Это отклонение совершается независимо от закона изменения скорости корабля, т. е. гиромаятник не обладает баллистическими погрешностями. При отклонении гиромаятника от истинной вертикали на угол а на гироскоп действует момент а от веса маятника, который Вызывает прецессию оси ротора гироскопа с угловой скоростью, равной угловой скорости поворота истинной вертикали в абсолютном пространстве.

При изменении скорости движения корабля на гироскоп действует также инерционный момент, развиваемый маятником и равный Если условие (VIII.87) выполняется, то гироскоп под влиянием

этого момента прецессирует в направлении к борту с такой угловой скоростью, что он неизменно оказывается в положении, соответствующем частному решению (VIII.89) уравнений (VIII.88). При случайном отклонении оси ротора гироскопа от положения равновесия, определяемого уравнениями (VIII.89) (например, вследствие трения в осях карданова подвеса), ось ротора гироскопа совершает незатухающие собственные колебания около положения равновесия. Период этих колебаний равен

Для обеспечения затухания собственных колебаний гиромаятника применяют специальные устройства: сообщающиеся сосуды, заполненные жидкостью, или дополнительные маятниковые устройства, которые управляют воздушной струей, выбрасываемой ротором гироскопа.

Рис. VIII.20. Гировертикаль с маятниковым корректирующим устройством

Рис. VIII.21. К составлению уравнений движения гировертикали

Однако в этом случае в гироскопическом маятнике при ускорении возникают возмущающие моменты.

Если не выполняется условие (VI 11.87), то возникают также баллистические погрешности гиромаятника.

Практически изготовление гиромаятника с периодом, равным 84,4 мин, связано со значительными техническими трудностями.

Гиромаятниковые вертикали в сочетании с разного рода демпфирующими устройствами не получили широкого распространения. На кораблях и самолетах применяются гировертикали, представляющие собой астатические гироскопы, движение которых корректируется специальными маятниковыми устройствами.

Гироскопические вертикали с маятниковым корректирующим устройством , . Гироскопические вертикали (рис. VIII.20) с маятниковыми корректирующими устройствами применяют в авиации и морском флоте. В качестве маятникового чувствительного элемента гировертикали используется жидкостной переключатель 4,

а коррекционные моменты накладываются на гироскоп с помощью асинхронных электродвигателей 2 и 3 с заторможенными роторами.

Питание управляющих обмоток осуществляется через маятниковый переключатель 4, представляющий собой жидкостной реостат. Корректирующее устройство имеет пропорциональную характеристику с ограничением или характеристику типа гистерезисной петли.

Если в процессе полета корректирующее устройство работает в зоне пропорциональности, то величина момента коррекции (рис. VIII.21) определяется по формулам:

Используя прецессионные уравнения движения с учетом моментов трения в подшипниках карданова подвеса при малых углах получим:

где - углы отклонения оси ротора от гировертикали; - эффективность коррекции;

Скорость прецессии гироскопа при действии моментов трения;

Е - крутизна характеристики корректирующего устройства;

Моменты трения в подшипниках осей наружной и внутренней рамок карданова подвеса;

Угловая скорость виража.

Уравнения прецессии гироскопа позволяют определить погрешности гировертикали на неподвижном основании:

погрешность гировертикали при полете с ускорением

и максимальную погрешность гировертикали на вираже:

Гироскопические вертикали с релейной или гистерезисной характеристикой корректирующего устройства также обладают погрешностями при полете с ускорением и на вираже.

При определении скоростной погрешности гировертикали необходимо учитывать суточное вращение Земли и движение самолета по отношению к Земле. Максимальная угловая скорость поворота направления истинной вертикали в абсолютном пространстве равна сумме переносной угловой скорости и суточного вращения Земли и относительной угловой скорости облета вокруг Земли

где R - радиус Земли.

Для того чтобы ось ротора гироскопа следила за направлением истинной вертикали, на гироскоп должен действовать момент, равный Такой момент развивает корректирующее устройство, и положение равновесия гировертикали определится равенством моментов

Из выражения (VIII.98) найдем

Последняя формула определяет максимальную величину скоростной погрешности гировертикали с пропорциональной коррекцией.

Выходными координатами прибора являются Рассмотрим динамические погрешности по координате . В прямолинейном полете возмущением поданной координате является угол отклонения кажущейся вертикали от истинной и угловая скорость поворота направления истинной вертикали в абсолютном пространстве,

где - постоянная времени коррекции.

Первое слагаемое определяет баллистические погрешности в динамике, второе - скоростные. С увеличением эффективности коррекции возрастают баллистические погрешности и уменьшаются скоростные.

Для уменьшения возможно применение апериодических и колебательных фильтров в контуре коррекции с большими постоянными времени.

Сигналы, пропорциональные углам, крена и тангажа самолета (крена и диферента корабля), снимаются с потенциометрических датчиков 1 и 5 (рис. VIII. 20). Напряжения, снимаемые со щеток, в первом приближении определяются по формулам

где - углы тангажа и крена самолета;

Соответствующие коэффициенты усиления сигналов, снимаемых с потенциометрических датчиков угла.

Для идеальной гировертикали , следовательно,

Для уменьшения баллистических погрешностей гировертикалей иногда ось ротора гироскопа наклоняют в направлении движения корабля или самолета на угол, пропорциональный скорости его движения.

В некоторых случаях для уменьшения баллистических погрешностей при движении самолета с ускорением корректирующие устройства выключают.

Гироскопические вертикали повышенной точности. При определении погрешностей гировертикалей повышенной точности нельзя считать, что направление кажущейся вертикали в установившемся режиме полета совпадает с направлением истинной вертикали. Дело в том, что полет самолета следует рассматривать как сложное движение: полет самолета относительно Земли, траектория которого определяется средствами навигации и пилотирования (относительное движение), и движение самолета вместе с Землей (переносное движение). При этом, если самолет летит по ортодромии (дуга большого круга Земли), то вектор скорости вследствие суточного вращения Земли поворачивается вокруг направления истинной вертикали с угловой скоростью и возникает поворотное ускорение, направленное по отрицательной оси (см. рис. VIII. 21) и равное

Вследствие чего направление кажущейся вертикали отклоняется от истинной в плоскости на угол

Если полет происходит по локсодромии (линия равных курсов), то вектор приобретает дополнительную угловую скорость вращения вокруг направления истинной вертикали, равную угловой скорости поворота географического трехгранника вокруг оси , а именно

где - восточная составляющая скорости полета.

Вследствие этого возникает центростремительное ускорение

которое направлено по отрицательной оси . При этом кажущаяся вертикаль еще отклоняется в плоскости на угол

При этом любой физический маятник в установившемся режиме полета с неизменным географическим курсом оказывается отклоненным от направления истинной вертикали на угол

Рассмотрим движение гировертикали (см. рис. VIII. 21) в полете в предположении, что в начале движения ось ротора гироскопа направлена по истинной вертикали (ось ), а оси у и х совпадают с осями и 5 соответственно. Предположим, что корректирующее устройство гировертикали, показанное на рис. VIII.20, выключено, и гировертикаль представляет собой астатический гироскоп, ось ротора которого сохраняет неизменное направление в абсолютном пространстве. При этом угловая скорость вращения направления истинной вертикали (ось в абсолютном пространстве будет

и ось ротора свободного гироскопа в рассматриваемый момент времени отклоняется от направления истинной вертикали с угловыми скоростями:

Если представить, что вокруг оси кардана гировертикали действуют коррекционные моменты, соответственно равные то скорости отклонения оси ротора гироскопа от направления истинной вертикали будут

Пусть с помощью специального счетно-решающего механизма формируются моменты коррекции в соответствии с уравнениями

где - соответственно широта места и курс самолета, определяемые с помощью счетно-решающего устройства; и - соответствующие коэффициенты пропорциональности. Тогда

Таким образом,

Если параметры счетно-решающего устройства подобрать так, чтобы уравнения (VIII. 104) обращаются в тождества:

при условии, что в начале движения направление оси ротора гироскопа совпадает с направлением истинной вертикали, т. е. при

Физический смысл такой коррекции заключается в том, что моментные датчики развивают моменты, создающие прецессию гироскопа со скоростью, соответствующей угловой скорости поворота истинной вертикали в инерциальном пространстве.

Рассмотренную выше некорректируемую от маятника гировертикаль использовать в продолжительном полете не представляется возможным, однако ее можно применять кратковременно во время маневра самолета. Для уменьшения погрешностей в установившемся полете и придания гировертикали свойств избирательности по отношению к направлению истинной вертикали применяют радиальную коррекцию, осуществляемую от физического маятника. Положение равновесия гировертикали с радиальной коррекцией в установившемся полете определяется из уравнений и

где - угловая скорость поворота вектора V вокруг Оси отсчитываемая относительно Земли.

Первый член первого уравнения (VIII. 106) и оба члена, стоящие в правой части второго уравнения, определяют скоростную погрешность гировертикали.

Второй член первого уравнения (VIII. 106) представляет собой погрешность, порождаемую поворотным, или кориолисовым, ускорением.

Третий член первого уравнения (VIII. 106) является навигационной погрешностью гировертикали, зависящей от метода навигации. Так, например, при полете по ортодромии , следовательно, навигационная погрешность равна нулю.

При полете по локсодромии навигационная погрешность

Величина погрешности, порождаемой кориолисовым ускорением, и навигационной погрешности гировертикали не зависит от крутизны радиальной коррекции.

Погрешность, порождаемую кориолисовым ускорением, и навигационную погрешность можно вычислить и устранить с помощью счетно-решающего механизма. При этом повышение точности гировертикали с радиадьной коррекцией достигается путем создания комплексной системы, включающей в себя гироскопическую вертикаль и счетно-решающий механизм, построенный с использованием навигационного автомата.

Гироскопические вертикали для самолетов, выполняющих фигуры высшего пилотажа , . При рассмотрении погрешностей гироскопических вертикалей при различных условиях полета предполагалось, что ось наружной рамы карданова подвеса гироскопа расположена параллельно продольной оси самолета. При такой

установке прибора погрешность показаний гироскопической вертикали не зависит от величины угла крена самолета на вираже. При пикировании самолета (рис. VIII.22), когда ось наружной рамки кардана приближается к совмещению с осью ротора гироскопа, т. е. угол Я мал, точность показаний прибора существенно зависит от угла тангажа самолета.

Рис. VIII.22. Движение гироскопа при сближении осей рамок карданова подвеса

Основная трудность создания гировертикалей для самолетов, выполняющих фигуры высшего пилотажа, заключается в том, что при совмещении оси ротора гироскопа с осью наружной рамки гироскоп теряет одну степень свободы, а следовательно, теряет специфические свойства гироскопа.

При совмещении этих осей под действием момента Мн вследствие потери гироскопических свойств рамка вместе с кожухом начнет ускоренно вращаться вокруг оси наружной рамки карданова подвеса.

Таким образом, при совмещении оси ротора гироскопа и оси наружной рамки кардана правильность показаний прибора при выполнении самолетом фигур высшего пилотажа не может быть гарантирована. Для предотвращения совмещения осей применяют различные устройства. Вариант такого устройства с неподвижным упором представлен на рис. VIII.23.

Рис. VIII.23. Гировертикаль с упором: 1 - упор; 2 - стержень; 3 - шайба; 4 - кожух; 5 - полая ось; 6 - наружная рамка

Через полую ось 5 наружной рамки карданова подвеса пропущен упор 1, а на кожухе 4 ротора гироскопа установлен стержень 2 с шайбой 3.

При опасном сближении оси ротора гироскопа с осью наружной рамки 6 кардана шайба соприкасается с неподвижным упором, и реакция упора создает реактивный момент, вектор которого направлен по оси внутренней рамки кардана. Этот момент вызывает прецессию гироскопа вокруг оси наружной рамки кардана. Шайба 3, скользя по поверхности упора 1, обойдет его, и совмещения осей не произойдет. Однако при таком способе предотвращения совмещения осей после совершения фигуры высшего пилотажа гироскоп все-таки отклоняется от направления истинной вертикали на угол, по меньшей мере, равный углу недохода оси ротора до совмещения с осью рамки.

Другим примером прибора, применяемого на самолетах, выполняющих фигуры высшего пилотажа, может служить авиагоризонт, показанный на рис. VIII.24. В этом авиагоризонте угол между осью наружной рамки кардана и осью ротора гироскопа автоматически поддерживается примерно равным 90° при любых эволюциях самолета, благодаря чему гироскоп сохраняет постоянно свою максимальную устойчивость. При этом гиромотор 6 (рис. VIII.24) и наружная рамка 5 подвешены на подшипниках в следящей рамке 4, которая автоматически удерживается электродвигателем 1 в таком положении, чтобы ось рамки 5 была перпендикулярна к оси ротора гироскопа.

Рис. VIII.24. Кинематическая схема АГИ: 1 - электродвигатель отработки; 2 - контакт выключателя; 3 - выключатель электродвигателя; 4 - следящая рамка; 5 - наружная рамка карданова подвеса; 6 - гиромотор; 7 - сферическая шкала; 8 - силуэт самолета

Чувствительным элементом, регистрирующим нарушение перпендикулярности осей и включающим электродвигатель который восстанавливает перпендикулярность осей, является выключатель 3, укрепленный на наружной рамке 5, и скользящий контакт 2, связанный с кожухом гиромотора.

Прецизионные гировертикали . Важным элементом в инерциальной системе является прецизионная (точная) гировертикаль.

Рассмотрим основные принципы ее построения.

Рис. VIII.25. Анализ движения прецизионной гировертикали

В некоторых случаях для определения направления истинной вертикали используется астатический гироскоп. При этом в начале полета ось ротора астатического гироскопа совмещают с направлением истинной вертикали. В процессе полета вследствие того, что направление истинной вертикали поворачивается в пространстве с угловой скоростью, равной (рис. VIII.25), а астатический гироскоп сохраняет направление неизменным в абсолютном пространстве, ось ротора гироскопа отклоняется от направления истинной вертикали с угловой скоростью где - абсолютная линейная скорость самолета.

Абсолютная линейная скорость составляет сумму относительной V и переносной линейной скорости, возникающей

вследствие суточного вращения Земли. Максимальная угловая скорость поворота направления истинной вертикали в пространстве равна

Для уменьшения скорости отклонения оси ротора гироскопа от направления истинной вертикали с помощью моментного датчика наложим на гироскоп момент внешних сил, равный М (рис. VIII.25).

Под действием момента М гироскоп прецессирует с угловой скоростью

Если в начале движения ось ротора гироскопа совпадает с направлением истинной вертикали, а затем угловая скорость поворота оси ротора гироскопа равна угловой скорости поворота направления истинной вертикали в пространстве, то ось ротора гироскопа неизменно следит за направлением истинной вертикали.

Основными погрешностями гироскопов являются собственный уход , карданная погрешность , виражная погрешность и кажущийся уход .

  • Величина собственного ухода определяется трением и балансировкой движущихся частей гироскопа .
  • Карданная погрешность представляет собой разность между углом курса , измеряемым в горизонтальной плоскости, и показаниями гирокомпаса при наклоне (по крену или тангажу) оси наружной рамки от вертикального положения.
  • Виражная погрешность появляется при виражах и возникает в связи с работой коррекционного устройства, обеспечивающего перпендикулярность положения ротора гироскопа к плоскости внешней рамки гироузла. В отличие от карданной погрешности виражная погрешность непрерывно накапливается в процессе выполнения виража и не исчезает после его окончания. Для её уменьшения выключают горизонтальную коррекцию гироскопа при виражах.
  • Кажущийся уход вызван тем, что свободный трехстепенной гироскоп сохраняет направление своей оси неизменным в пространстве относительно неподвижных звезд, но отнюдь не относительно Земли и ее плоскостей. Земля сама движется в пространстве, поэтому, даже абсолютно неподвижный гироскоп в пространстве вращается относительно Земли, создавая видимое кажущееся движение своей оси. Что бы понять это явление, вспомним маятник Фуко. Качающийся маятник, это своего рода гироскоп . Поэтому, глядя на него мы можем наблюдать (если конечно находимся не на экваторе) вращение Земли вокруг своей оси.

Точность совпадения центра тяжести гироскопической системы с точкой подвеса (сбалансированность), величина силы трения в осях карданного подвеса, вес, диаметр и скорость вращения являются определяющими факторами устойчивости оси гироскопа . При воздействии на карданную систему внешних сил, ось гироскопа перемещается в плоскости, перпендикулярной направлению действия силы. Такое движение гироскопа называется прецессией . Прецессия прекращается с прекращением воздействия на гироскоп . В авиагоризонтах требуется удерживать гироскоп в вертикальном положении при эволюциях и изменении скорости ЛА . Для уменьшения накапливающихся погрешностей приходится корректировать положение гироскопа механизмами вертикальной коррекции . В качестве датчика вертикали применяются системы маятниковой коррекции, следящие за тем, что бы нижний конец оси гироскопа был направлен к центру Земли. Маятниковые системы подвержены влиянию ускорений, возникающих при маневрировании. Как пример, можно привести явление, называемое "завал авиагоризонта" (индикация, отличных от нуля, значений тангажа или крена в прямолинейном полёте после завершения маневра). Поэтому, на этапах маневрирования, системы коррекции выключаются. Погрешность показаний гироскопа будет зависеть от скорости коррекции, скорости собственного ухода, параметров выключателя коррекции. На первых пневматических авиагоризонтах коррекция не отключалась на вираже. Поэтому скорость коррекции выбиралась очень малой, чтобы уход гироскопа не был значительным за время виража. Соответственно увеличивалось время восстановления вертикали. Позже коррекцию стали выключать в повороте, а на некоторых, и при ускорениях (АГД -1). В настоящее время используются инерциальные гировертикали , в которых точность достигается созданием искусственного маятника "длиной", равной радиусу Земли.

Скомпенсированный по кажущемуся уходу гироскоп является указателем



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png